Pseudospectra of the Orr-Sommerfeld Operator

This paper investigates the pseudospectra and the numerical range of the Orr–Sommerfeld operator for plane Poiseuille flow. A number $z \in {\bf C}$ is in the $\epsilon $-pseudospectrum of a matrix or operator A if $\| ( zI - A )^{ - 1} \| \geq \epsilon ^{ - 1} $, or, equivalently, if z is in the spectrum of $A + E$ for some perturbation E satisfying $\| E \| \leq \epsilon $. The numerical range of A is the set of numbers of the form $( Au,u )$, where $( \cdot , \cdot )$ is the inner product and u is a vector or function with huh $\| u \| = 1$.The spectrum of the Orr–Sommerfeld operator consists of three branches. It is shown that the eigenvalues at the intersection of the branches are highly sensitive to perturbations and that the sensitivity increases dramatically with the Reynolds number. The associated eigenfunctions are nearly linearly dependent, even though they form a complete set.To understand the high sensitivity of the eigenvalues, a model operator is considered, related to the Airy equation tha...

[1]  I. Schensted,et al.  Contributions to the theory of hydrodynamic stability : technical report , 1960 .

[2]  D. E. Amos,et al.  A remark on Algorithm 644: “A portable package for Bessel functions of a complex argument and nonnegative order” , 1995, TOMS.

[3]  Daniel D. Joseph,et al.  Stability of fluid motions , 1976 .

[4]  Kathryn M. Butler,et al.  Three‐dimensional optimal perturbations in viscous shear flow , 1992 .

[5]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[6]  W. H. Reid,et al.  On the stability of stratified viscous plane Couette flow. Part 2. Variable buoyancy frequency , 1977, Journal of Fluid Mechanics.

[7]  Peter J. Schmid,et al.  Vector Eigenfunction Expansions for Plane Channel Flows , 1992 .

[8]  L. Trefethen Approximation theory and numerical linear algebra , 1990 .

[9]  Brian F. Farrell,et al.  Optimal excitation of perturbations in viscous shear flow , 1988 .

[10]  L. Trefethen,et al.  Stability of the method of lines , 1992, Spectra and Pseudospectra.

[11]  L. Mack,et al.  A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer , 1976, Journal of Fluid Mechanics.

[12]  L. Trefethen,et al.  Eigenvalues and pseudo-eigenvalues of Toeplitz matrices , 1992 .

[13]  L. Gustavsson Energy growth of three-dimensional disturbances in plane Poiseuille flow , 1981, Journal of Fluid Mechanics.

[14]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[15]  G. Habetler,et al.  A completeness theorem for non-selfadjoint eigenvalue problems in hydrodynamic stability , 1969 .

[16]  D. E. Amos Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order , 1986, TOMS.

[17]  Tosio Kato Perturbation theory for linear operators , 1966 .

[18]  W. Kerner Large-scale complex eigenvalue problems , 1989 .

[19]  V. I. I︠U︡dovich The linearization method in hydrodynamical stability theory , 1989 .

[20]  Daniel D. Joseph,et al.  Eigenvalue bounds for the Orr—Sommerfeld equation. Part 2 , 1969, Journal of Fluid Mechanics.