Evolutionary consequences of putative intra-and interspecific hybridization in agaric fungi

Agaric fungi of the southern Appalachian Mountains including Great Smoky Mountains National Park are often heterozygous for the rDNA internal transcribed spacer region (ITS) with >42% of collections showing some heterozygosity for indels and/or base-pair substitutions. For these collections, intra-individual haplotype divergence is typically less than 2%, but for 3% of these collections intra-individual haplotype divergence exceeds that figure. We hypothesize that high intra-individual haplotype divergence is due to hybridization between agaric fungi with divergent haplotypes, possibly migrants from geographically isolated glacial refugia. Four species with relatively high haplotype divergence were examined: Armillaria mellea, Amanita citrina f. lavendula, Gymnopus dichrous and the Hygrocybe flavescens/chlorophana complex. The ITS region was sequenced, haplotypes of heterozygotes were resolved through cloning, and phylogenetic analyses were used to determine the outcome of hybridization events. Within Armillaria mellea and Amanita citrina f. lavendula, we found evidence of interbreeding and recombination. Within G. dichrous and H. flavescens/chlorophana, hybrids were identified but there was no evidence for F2 or higher progeny in natural populations suggesting that the hybrid fruitbodies might be an evolutionary dead end and that the genetically divergent Mendelian populations from which they were derived are, in fact, different species. The association between ITS haplotype divergence of less than 5% (Armillaria mellea = 2.6% excluding gaps; Amanita citrina f. lavendula = 3.3%) with the presence of putative recombinants and greater than 5% (Gymnopus dichrous = 5.7%; Hygrocybe flavescens/chlorophana = 14.1%) with apparent failure of F1 hybrids to produce F2 or higher progeny in populations may suggest a correlation between genetic distance and reproductive isolation.

[1]  J. Stenlid,et al.  Pathogenic fungal species hybrids infecting plants. , 2002, Microbes and infection.

[2]  R. Whittaker,et al.  The Refugial Debate , 2000, Science.

[3]  R. Petersen,et al.  Biogeographical patterns in Artomyces pyxidatus , 2002, Mycologia.

[4]  G. Newcombe,et al.  Melampsora ‹columbiana, a natural hybrid of M. medusae and M. occidentalis , 2000 .

[5]  T. Giraud,et al.  Glacial Refugia in Pathogens: European Genetic Structure of Anther Smut Pathogens on Silene latifolia and Silene dioica , 2010, PLoS pathogens.

[6]  D. Coltman,et al.  Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America , 2010, Molecular ecology.

[7]  Ole Seehausen,et al.  Genetic Distance between Species Predicts Novel Trait Expression in their Hybrids , 2009, Evolution; international journal of organic evolution.

[8]  R. Halling The genus Collybia (Agaricales) in the northeastern United States and adjacent Canada , 1983 .

[9]  P. Inderbitzin,et al.  The Ascomycete Verticillium longisporum Is a Hybrid and a Plant Pathogen with an Expanded Host Range , 2011, PloS one.

[10]  R. Petersen,et al.  INTERBREEDING POPULATIONS OF SOME MARASMIUS SPECIES , 1992 .

[11]  U. Schliewen,et al.  Adaptive radiation and hybridization in Wallace's Dreamponds: evidence from sailfin silversides in the Malili Lakes of Sulawesi , 2006, Proceedings of the Royal Society B: Biological Sciences.

[12]  T. Giraud,et al.  The tempo and modes of evolution of reproductive isolation in fungi , 2012, Heredity.

[13]  K. Korhonen,et al.  Evidence of natural hybridization among homothallic members of the basidiomycete Armillaria mellea sensu stricto. , 2012, Fungal biology.

[14]  R. Abbott,et al.  Plant invasions, interspecific hybridization and the evolution of new plant taxa. , 1992, Trends in ecology & evolution.

[15]  R. Petersen Contributions of mating studies to mushroom systematics , 1995 .

[16]  T. Giraud,et al.  Existence of a pattern of reproductive character displacement in Homobasidiomycota but not in Ascomycota , 2008, Journal of evolutionary biology.

[17]  Vincent Moulton,et al.  RDP3: a flexible and fast computer program for analyzing recombination , 2010, Bioinform..

[18]  Infraspecific variation among geographically separated collections of Marasmius androsaceus , 1997 .

[19]  G. Hewitt Post-glacial re-colonization of European biota , 1999 .

[20]  T. Dobzhansky Genetics and the Origin of Species , 1937 .

[21]  L. Morin,et al.  Putative natural hybrid between Puccinia lagenophorae and an unknown rust fungus on Senecio madagascariensis in KwaZulu-Natal, South Africa. , 2009, Mycological research.

[22]  S. Adamčík,et al.  The delimitation of Flammulina fennae , 2010, Mycological Progress.

[23]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[24]  David Posada,et al.  An Exact Nonparametric Method for Inferring Mosaic Structure in Sequence Triplets , 2007, Genetics.

[25]  D. Lindner,et al.  Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus , 2011, Mycologia.

[26]  R. Petersen,et al.  Panellus stypticus : geographically separated interbreeding populations , 1992 .

[27]  K. O’Donnell,et al.  Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. , 1997, Molecular phylogenetics and evolution.

[28]  D. Bryant,et al.  A Simple and Robust Statistical Test for Detecting the Presence of Recombination , 2006, Genetics.

[29]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[30]  R. Petersen,et al.  Using heterozygosity to estimate a percentage DNA sequence similarity for environmental species' delimitation across basidiomycete fungi. , 2009, The New phytologist.

[31]  H. Delcourt,et al.  Postglacial Rise and Decline of Ostrya virginiana (Mill.) K. Koch and Carpinus caroliniana Walt. In Eastern North America: Predictable Responses of Forest Species to Cyclic Changes in Seasonality of Climates , 1994 .

[32]  D. Rizzo,et al.  Inferring dispersal patterns of the generalist root fungus Armillaria mellea. , 2012, The New phytologist.

[33]  Darren Martin,et al.  RDP: detection of recombination amongst aligned sequences , 2000, Bioinform..

[34]  T. Giraud,et al.  EVOLUTION OF REPRODUCTIVE ISOLATION WITHIN A PARASITIC FUNGAL SPECIES COMPLEX , 2007, Evolution; international journal of organic evolution.

[35]  L. Rieseberg,et al.  Are hybrid species more fit than ancestral parent species in the current hybrid species habitats? , 2010, Journal of evolutionary biology.

[36]  R. Vilgalys,et al.  EVIDENCE FOR LIMITED INTERCONTINENTAL GENE FLOW IN THE COSMOPOLITAN MUSHROOM, SCHIZOPHYLLUM COMMUNE , 1999, Evolution; international journal of organic evolution.

[37]  R. Petersen,et al.  Intercontinental interbreeding collections of Pleurotus pulmonarius , with notes on P . ostreatus and other species , 2011 .

[38]  M. Garbelotto,et al.  The European S and F intersterility groups of Heterobasidion annosum may represent sympatric protospecies , 1998 .

[39]  Jonathan S. Adams,et al.  Precious heritage : the status of biodiversity in the United States , 2000 .

[40]  B. Demesure,et al.  CHLOROPLAST DNA PHYLOGEOGRAPHY OF THE COMMON BEECH (FAGUS SYLVATICA L.) IN EUROPE , 1996, Evolution; international journal of organic evolution.

[41]  K. Baumgartner,et al.  Contrasting patterns of genetic diversity and population structure of Armillaria mellea sensu stricto in the eastern and western United States. , 2010, Phytopathology.

[42]  C. Schardl,et al.  Interspecific hybridization in plant‐associated fungi and oomycetes: a review , 2003, Molecular ecology.

[43]  G. Schnabel,et al.  Identification and characterization of Armillaria tabescens from the southeastern United States. , 2005, Mycological research.

[44]  Mee-Sook Kim,et al.  Phylogeographic patterns of Armillaria ostoyae in the western United States , 2007 .

[45]  James E. Johnson,et al.  Mating systems in Xeromphalina species , 1997 .

[46]  G. Hewitt Post-glacial recolonization of European biota , 2007 .

[47]  John Maynard Smith,et al.  Analyzing the mosaic structure of genes , 1992, Journal of Molecular Evolution.

[48]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[49]  R. Petersen,et al.  Intercontinental compatibility in Panellus stypticus with a note on bioluminescence , 1992 .

[50]  C. Decock,et al.  Hybridization among cryptic species of the cellar fungus Coniophora puteana (Basidiomycota) , 2006, Molecular ecology.

[51]  W. Modell Population, Species and Evolution , 1971 .

[52]  T. Bruns,et al.  Molecular tools for the identification of ectomycorrhizal fungi — taxon‐specific oligonucleotide probes for suilloid fungi , 1993, Molecular ecology.

[53]  R. Petersen,et al.  Apparent recombination or gene conversion in the ribosomal ITS region of a Flammulina (Fungi, Agaricales) hybrid. , 2001, Molecular biology and evolution.

[54]  H. Kauserud,et al.  Genome wide AFLP markers support cryptic species in Coniophora (Boletales). , 2012, Fungal biology.

[55]  J. Carlson,et al.  Segregation of random amplified DNA markers in F1 progeny of conifers , 1991, Theoretical and Applied Genetics.

[56]  H. Delcourt Holocene vegetational changes in the southern Appalachian mountains, U.S.A. , 1985 .

[57]  R. Knight,et al.  Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex , 2008, Nature Methods.

[58]  R. Petersen,et al.  Reports on long-distance sexual compatibility in Agaricales , 1997 .