Slack-based directional distance function in the presence of bad outputs: theory and application to Vietnamese banking

In this paper we extend the slack-based directional distance function introduced by Färe and Grosskopf (Eur J Oper Res 200(1):320–322, 2010) to measure efficiency in the presence of bad outputs and illustrate it through an application on data of Vietnamese commercial banks. We also compare results from the slack-based directional distance function relative to the directional distance function, the enhanced hyperbolic efficiency measure (Färe et al. in Rev Econ Stat 71(1):90–98, 1989) and the Farrell-type technical efficiency and confirm that it has greater discriminative power.

[1]  Loretta J. Mester,et al.  The Wharton Financial Institutions Center Explaining the Dramatic Changes in Performance of U.s. Banks: Technological Change, Deregulation, and Dynamic Changes in Competition Technological Change, Deregulation, and Dynamic Changes in Competition , 2022 .

[2]  Léopold Simar,et al.  Probabilistic characterization of directional distances and their robust versions , 2012 .

[3]  Loretta J. Mester,et al.  Explaining The Dramatic Changes In Performance Of U.S. Banks: Technological Change, Deregulation, And Dynamic Changes In Competition , 2003 .

[4]  Larry Jenkins,et al.  A multivariate statistical approach to reducing the number of variables in data envelopment analysis , 2003, Eur. J. Oper. Res..

[5]  Léopold Simar,et al.  How to measure the impact of environmental factors in a nonparametric production model , 2012, Eur. J. Oper. Res..

[6]  Valentin Zelenyuk,et al.  How relevant is the choice of risk management control variable to non-parametric bank profit efficiency analysis? The case of South Korean banks , 2013, Ann. Oper. Res..

[7]  Qi Li,et al.  Nonparametric testing the similarity of two unknown density functions: local power and bootstrap analysis , 1999 .

[8]  Allen N. Berger,et al.  Efficiency of Financial Institutions: International Survey and Directions for Future Research , 1997 .

[9]  Léopold Simar,et al.  WHEN BIAS KILLS THE VARIANCE: CENTRAL LIMIT THEOREMS FOR DEA AND FDH EFFICIENCY SCORES , 2014, Econometric Theory.

[10]  R. Fletcher Practical Methods of Optimization , 1988 .

[11]  Emmanuel Thanassoulis,et al.  Negative data in DEA: a directional distance approach applied to bank branches , 2004, J. Oper. Res. Soc..

[12]  Rolf Färe,et al.  Productivity and Undesirable Outputs: A Directional Distance Function Approach , 1995 .

[13]  Fotios Pasiouras,et al.  Assessing Bank Efficiency and Performance with Operational Research and Artificial Intelligence Techniques: A Survey , 2009, Eur. J. Oper. Res..

[14]  Eugene F. Schuster,et al.  Incorporating support constraints into nonparametric estimators of densities , 1985 .

[15]  Joseph C. Paradi,et al.  A survey on bank branch efficiency and performance research with data envelopment analysis , 2013 .

[16]  Valentin Zelenyuk,et al.  Comparative analysis of banking production frameworks in eastern european financial markets , 2009, Eur. J. Oper. Res..

[17]  Timo Kuosmanen,et al.  Weak Disposability in Nonparametric Production Analysis: Reply to Färe and Grosskopf , 2009 .

[18]  Valentin Zelenyuk,et al.  Cost Decompositions and the Efficient Subset , 2016 .

[19]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[20]  Klaus Schittkowski,et al.  A comparative performance evaluation of 27 nonlinear programming codes , 1983, Computing.

[21]  Léopold Simar,et al.  Testing the "Separability" Condition in Two-Stage Nonparametric Models of Production , 2015 .

[22]  D. Primont,et al.  Multi-Output Production and Duality: Theory and Applications , 1994 .

[23]  Boaz Golany,et al.  Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions , 1985 .

[24]  Rolf Färe,et al.  Nonparametric Productivity Analysis with Undesirable Outputs: Comment , 2003 .

[25]  Hirofumi Fukuyama,et al.  Modelling bank performance: A network DEA approach , 2017, Eur. J. Oper. Res..

[26]  Lawrence M. Seiford,et al.  Modeling undesirable factors in efficiency evaluation , 2002, Eur. J. Oper. Res..

[27]  Léopold Simar,et al.  On Testing Equality of Distributions of Technical Efficiency Scores , 2006 .

[28]  Valentin Zelenyuk,et al.  Decomposing profit efficiency using a slack-based directional distance function , 2015, Eur. J. Oper. Res..

[29]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[30]  William L. Weber,et al.  A note on efficiency and productivity growth in the Korean Banking Industry, 1992–2002 , 2006 .

[31]  Kaoru Tone,et al.  A slacks-based measure of super-efficiency in data envelopment analysis , 2001, Eur. J. Oper. Res..

[32]  S. Lozano Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector , 2016 .

[33]  Qi Li,et al.  Nonparametric testing of closeness between two unknown distribution functions , 2009 .

[34]  Rolf Färe,et al.  Directional distance functions and slacks-based measures of efficiency , 2010, Eur. J. Oper. Res..

[35]  William L. Weber,et al.  A slacks-based inefficiency measure for a two-stage system with bad outputs , 2010 .

[36]  Nick Kapnison,et al.  ANNUAL REPORT FOR 2010 , 2010 .

[37]  William L. Weber,et al.  Characteristics of a Polluting Technology: Theory and Practice , 2002 .

[38]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[39]  Léopold Simar,et al.  Testing Hypotheses in Nonparametric Models of Production , 2016 .

[40]  M. J. D. Powell,et al.  THE CONVERGENCE OF VARIABLE METRIC METHODS FOR NONLINEARLY CONSTRAINED OPTIMIZATION CALCULATIONS , 1978 .

[41]  W. Cooper,et al.  Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software , 1999 .

[42]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[43]  R. Färe,et al.  Profit, Directional Distance Functions, and Nerlovian Efficiency , 1998 .

[44]  Claudia Curi,et al.  Foreign bank diversification and efficiency prior to and during the financial crisis: Does one business model fit all? , 2015 .

[45]  Léopold Simar,et al.  Explaining inefficiency in nonparametric production models: the state of the art , 2014, Ann. Oper. Res..

[46]  Rolf Färe,et al.  A Comment on Weak Disposability in Nonparametric Production Analysis , 2009 .

[47]  William L. Weber,et al.  A directional slacks-based measure of technical inefficiency , 2009 .

[48]  Philip E. Gill,et al.  Practical optimization , 1981 .

[49]  Rolf Färe,et al.  Measuring the technical efficiency of production , 1978 .

[50]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[51]  Léopold Simar,et al.  Statistical inference for DEA estimators of directional distances , 2012, Eur. J. Oper. Res..

[52]  C.A.K. Lovell,et al.  Multilateral Productivity Comparisons When Some Outputs are Undesirable: A Nonparametric Approach , 1989 .

[53]  P. W. Wilson,et al.  Estimation and inference in two-stage, semi-parametric models of production processes , 2007 .

[54]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[55]  Timo Kuosmanen Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs , 2005 .

[56]  C. W. Sealey,et al.  Inputs, Outputs, and a Theory of Production and Cost at Depository Financial Institutions , 1977 .

[57]  R. Färe,et al.  Benefit and Distance Functions , 1996 .