Multilevel Control Variates for Uncertainty Quantification in Simulations of Cloud Cavitation

We quantify uncertainties in the location and magnitude of extreme pressure spots revealed from large scale multiphase flow simulations of cloud cavitation collapse. We examine clouds containing 50...

[1]  J. Sukys Adaptive Load Balancing for Massively Parallel Multi-Level Monte Carlo Solvers , 2013, PPAM.

[2]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[3]  Benjamin Peherstorfer,et al.  Survey of multifidelity methods in uncertainty propagation, inference, and optimization , 2018, SIAM Rev..

[4]  C. Brennen Cavitation and Bubble Dynamics , 1995 .

[5]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[6]  Florian Müller,et al.  Multilevel Monte Carlo for two phase flow and Buckley-Leverett transport in random heterogeneous porous media , 2013, J. Comput. Phys..

[7]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[8]  Jonas Sukys,et al.  Static Load Balancing for Multi-level Monte Carlo Finite Volume Solvers , 2011, PPAM.

[9]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[10]  Katsuhiro Yamamoto,et al.  Investigation of Bubble Clouds in a Cavitating Jet , 2016 .

[11]  Georges L. Chahine,et al.  PRESSURES GENERATED BY A BUBBLE CLOUD COLLAPSE , 1984 .

[12]  Nikolaus A. Adams,et al.  Shocks in Cavitating Flows , 2013 .

[13]  Siddhartha Mishra,et al.  Multi-Level Monte Carlo Finite Volume methods for uncertainty quantification of acoustic wave propagation in random heterogeneous layered medium , 2014 .

[14]  Jonas Sukys,et al.  Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2012, J. Comput. Phys..

[15]  Kjetil Olsen Lye,et al.  Multilevel Monte-Carlo for measure valued solutions , 2016, 1611.07732.

[16]  K. Mørch,et al.  On the Collapse of Cavity Clusters in Flow Cavitation , 1980 .

[17]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[18]  G. E. Reisman,et al.  Shock Waves in Cloud Cavitation , 1997 .

[19]  Paris Perdikaris,et al.  Inferring solutions of differential equations using noisy multi-fidelity data , 2016, J. Comput. Phys..

[20]  Siddhartha Mishra,et al.  Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..

[21]  George Em Karniadakis,et al.  A multi-fidelity framework for investigating the performance of super-cavitating hydrofoils under uncertain flow conditions , 2017 .

[22]  Daniele Venturi,et al.  Multi-fidelity Gaussian process regression for prediction of random fields , 2017, J. Comput. Phys..

[23]  R. Menikoff,et al.  The Riemann problem for fluid flow of real materials , 1989 .

[24]  C. Reisinger,et al.  Stochastic Finite Differences and Multilevel Monte Carlo for a Class of SPDEs in Finance , 2012, SIAM J. Financial Math..

[25]  Nikolaus A. Adams,et al.  Numerical investigation of collapsing cavity arrays , 2012 .

[26]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[27]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[28]  G. Karniadakis,et al.  Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simulations , 2006 .

[29]  K. Mørch,et al.  Energy considerations on the collapse of cavity clusters , 1982 .

[30]  J. B. Freund,et al.  Growth-and-collapse dynamics of small bubble clusters near a wall , 2015, Journal of Fluid Mechanics.

[31]  Costas Papadimitriou,et al.  Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models , 2015, J. Comput. Phys..

[32]  Hervé Guillard,et al.  A five equation reduced model for compressible two phase flow problems , 2005 .

[33]  Fabio Nobile,et al.  Stochastic Partial Differential Equations: Analysis and Computations a Multi Level Monte Carlo Method with Control Variate for Elliptic Pdes with Log- Normal Coefficients a Multi Level Monte Carlo Method with Control Variate for Elliptic Pdes with Log-normal Coefficients , 2022 .

[34]  Eric Johnsen,et al.  Numerical simulations of non-spherical bubble collapse , 2009, Journal of Fluid Mechanics.

[35]  Jonas Sukys,et al.  High throughput simulations of two-phase flows on Blue Gene/Q , 2015, PARCO.

[36]  Christopher Earls Brennen,et al.  Cavitation in medicine , 2015, Interface Focus.

[37]  Gianluca Iaccarino,et al.  A low-rank control variate for multilevel Monte Carlo simulation of high-dimensional uncertain systems , 2016, J. Comput. Phys..

[38]  Benjamin Peherstorfer,et al.  Optimal Model Management for Multifidelity Monte Carlo Estimation , 2016, SIAM J. Sci. Comput..

[39]  Peter Arbenz,et al.  A fault tolerant implementation of Multi-Level Monte Carlo methods , 2013, PARCO.

[40]  D. Stewart,et al.  Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations , 2001 .

[41]  Jonas Sukys,et al.  Multilevel Monte Carlo Finite Volume Methods for Shallow Water Equations with Uncertain Topography in Multi-dimensions , 2012, SIAM J. Sci. Comput..

[42]  G E Karniadakis,et al.  The stochastic piston problem. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Ronald A. Roy,et al.  Applications of Acoustics and Cavitation to Noninvasive Therapy and Drug Delivery , 2008 .

[44]  John R. Blake,et al.  Collapsing cavities, toroidal bubbles and jet impact , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  M. Baer,et al.  A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .

[46]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[47]  Eric Johnsen,et al.  Implementation of WENO schemes in compressible multicomponent flow problems , 2005, J. Comput. Phys..

[48]  Nikolaus A. Adams,et al.  11 PFLOP/s simulations of cloud cavitation collapse , 2013, 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[49]  Emil-Alexandru Brujan,et al.  Shock wave emission from a cloud of bubbles , 2012 .

[50]  F. Müller Stochastic methods for uncertainty quantification in subsurface flow and transport problems , 2014 .

[51]  Pietro Marco Congedo,et al.  About the uncertainty quantification of turbulence and cavitation models in cavitating flows simulations , 2015 .

[52]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[53]  Alexey Chernov,et al.  Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems , 2015, Numerische Mathematik.

[54]  David P. Schmidt,et al.  The internal flow of diesel fuel injector nozzles: A review , 2001 .

[55]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..

[56]  Petros Koumoutsakos,et al.  Large Scale Simulation of Cloud Cavitation Collapse , 2017, ICCS.

[57]  Dongbin Xiu,et al.  Galerkin method for wave equations with uncertain coefficients , 2008 .

[58]  Carlos Pantano,et al.  A diffuse interface model with immiscibility preservation , 2013, J. Comput. Phys..

[59]  Nikolaus A. Adams,et al.  A conservative interface method for compressible flows , 2006, J. Comput. Phys..

[60]  T. J. Dodwell,et al.  A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow , 2013, SIAM/ASA J. Uncertain. Quantification.

[61]  Andrew M. Stuart,et al.  Sparse MCMC gpc finite element methods for Bayesian inverse problems , 2012 .

[62]  Claus-Dieter Ohl,et al.  Controlled multibubble surface cavitation. , 2006, Physical review letters.

[63]  Franck Cappello,et al.  Fault Tolerance in Petascale/ Exascale Systems: Current Knowledge, Challenges and Research Opportunities , 2009, Int. J. High Perform. Comput. Appl..

[64]  Jonas Šukys Robust multi-level Monte Carlo finite volume methods for systems of hyperbolic conservation laws with random input data , 2014 .

[65]  Richard Saurel,et al.  A compressible flow model with capillary effects , 2005 .

[66]  Shengcai Li,et al.  Tiny bubbles challenge giant turbines: Three Gorges puzzle , 2015, Interface Focus.

[67]  Jeroen A. S. Witteveen,et al.  An adaptive Stochastic Finite Elements approach based on Newton–Cotes quadrature in simplex elements , 2009 .

[68]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[69]  Alexandre Ern,et al.  Intrusive projection methods with upwinding for uncertain nonlinear hyperbolic systems , 2009 .

[70]  Bruno Després,et al.  Uncertainty quantification for systems of conservation laws , 2009, J. Comput. Phys..

[71]  J. Williamson Low-storage Runge-Kutta schemes , 1980 .