Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis

[1]  Y. Kapulnik,et al.  Strigolactones’ Effect on Root Growth and Root-Hair Elongation May Be Mediated by Auxin-Efflux Carriers , 2010, Journal of Plant Growth Regulation.

[2]  Zhongyuan Hu,et al.  Strigolactones Negatively Regulate Mesocotyl Elongation in Rice during Germination and Growth in Darkness , 2010, Plant & cell physiology.

[3]  O. Leyser,et al.  Auxin and strigolactones in shoot branching: intimately connected? , 2010, Biochemical Society transactions.

[4]  A. Fernie,et al.  SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. , 2009, The Plant journal : for cell and molecular biology.

[5]  Przemyslaw Prusinkiewicz,et al.  Control of bud activation by an auxin transport switch , 2009, Proceedings of the National Academy of Sciences.

[6]  C. Beveridge,et al.  Interactions between Auxin and Strigolactone in Shoot Branching Control1[C][OA] , 2009, Plant Physiology.

[7]  S. Steinkellner,et al.  Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi , 2009, Mycorrhiza.

[8]  C. Beveridge,et al.  Strigolactones: discovery of the elusive shoot branching hormone. , 2009, Trends in plant science.

[9]  Ottoline Leyser,et al.  The control of shoot branching: an example of plant information processing. , 2009, Plant, cell & environment.

[10]  C. Beveridge,et al.  Strigolactone Acts Downstream of Auxin to Regulate Bud Outgrowth in Pea and Arabidopsis1[C][OA] , 2009, Plant Physiology.

[11]  Daniela S. Floss,et al.  Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited , 2009, Plant signaling & behavior.

[12]  C. Beveridge,et al.  Roles for Auxin, Cytokinin, and Strigolactone in Regulating Shoot Branching1[C][W][OA] , 2009, Plant Physiology.

[13]  C. Grierson,et al.  Auxin transport through non-hair cells sustains root-hair development , 2008, Nature Cell Biology.

[14]  Y. Kamiya,et al.  Inhibition of shoot branching by new terpenoid plant hormones , 2008, Nature.

[15]  Jean-Charles Portais,et al.  Strigolactone inhibition of shoot branching , 2008, Nature.

[16]  Arnaud Besserer,et al.  GR24, a Synthetic Analog of Strigolactones, Stimulates the Mitosis and Growth of the Arbuscular Mycorrhizal Fungus Gigaspora rosea by Boosting Its Energy Metabolism[C][W] , 2008, Plant Physiology.

[17]  H. Bouwmeester,et al.  Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. , 2008, Plant physiology and biochemistry : PPB.

[18]  K. Akiyama,et al.  Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. , 2008, The New phytologist.

[19]  Patrick Mulder,et al.  Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. , 2008, The New phytologist.

[20]  H. Bouwmeester,et al.  Fine-tuning regulation of strigolactone biosynthesis under phosphate starvation , 2008, Plant signaling & behavior.

[21]  K. Yoneyama,et al.  Production of Strigolactones by Arabidopsis thaliana responsible for Orobanche aegyptiaca seed germination , 2008, Plant Growth Regulation.

[22]  O. Leyser,et al.  Novel phytohormones involved in long-range signaling. , 2007, Current opinion in plant biology.

[23]  O. Leyser,et al.  Hormonal control of shoot branching. , 2007, Journal of experimental botany.

[24]  K. Yoneyama,et al.  Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites , 2007, Planta.

[25]  H. Bouwmeester,et al.  Rhizosphere communication of plants, parasitic plants and AM fungi. , 2007, Trends in plant science.

[26]  P. Stirnberg,et al.  MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. , 2007, The Plant journal : for cell and molecular biology.

[27]  K. Yoneyama,et al.  Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites , 2007, Planta.

[28]  Sébastien Roy,et al.  Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria , 2006, PLoS biology.

[29]  K. Akiyama,et al.  Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. , 2006, Annals of botany.

[30]  O. Leyser,et al.  The Arabidopsis MAX Pathway Controls Shoot Branching by Regulating Auxin Transport , 2006, Current Biology.

[31]  Ottoline Leyser,et al.  Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene. , 2005, The Plant journal : for cell and molecular biology.

[32]  H. Bouwmeester,et al.  The Strigolactone Germination Stimulants of the Plant-Parasitic Striga and Orobanche spp. Are Derived from the Carotenoid Pathway1 , 2005, Plant Physiology.

[33]  K. Akiyama,et al.  Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi , 2005, Nature.

[34]  O. Leyser,et al.  MAX3/CCD7 Is a Carotenoid Cleavage Dioxygenase Required for the Synthesis of a Novel Plant Signaling Molecule , 2004, Current Biology.

[35]  W. Schmidt,et al.  Environmentally Induced Plasticity of Root Hair Development in Arabidopsis1 , 2004, Plant Physiology.

[36]  L. Herrera-Estrella,et al.  The role of nutrient availability in regulating root architecture. , 2003, Current opinion in plant biology.

[37]  G. Sandberg,et al.  Dissecting Arabidopsis lateral root development. , 2003, Trends in plant science.

[38]  D. Inzé,et al.  Auxin Transport Promotes Arabidopsis Lateral Root Initiation , 2001, Plant Cell.

[39]  D. Jones,et al.  Through form to function: root hair development and nutrient uptake. , 2000, Trends in plant science.

[40]  Ottoline Leyser,et al.  An Auxin-Dependent Distal Organizer of Pattern and Polarity in the Arabidopsis Root , 1999, Cell.

[41]  Alan Marchant,et al.  AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues , 1999, The EMBO journal.

[42]  K. Yoneyama,et al.  Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover , 1998 .

[43]  R. J. Pitts,et al.  Auxin and ethylene promote root hair elongation in Arabidopsis. , 1998, The Plant journal : for cell and molecular biology.

[44]  G. Hagen,et al.  Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. , 1997, The Plant cell.

[45]  J. Guern,et al.  Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells , 1996, Planta.

[46]  M. Evans,et al.  Responses of Arabidopsis roots to auxin studied with high temporal resolution: Comparison of wild type and auxin-response mutants , 1994, Planta.

[47]  M. Bevan,et al.  GUS fusions: beta‐glucuronidase as a sensitive and versatile gene fusion marker in higher plants. , 1987, The EMBO journal.

[48]  Yoichi M. A. Yamada,et al.  Isolation and identification of alectrol as (+)-orobanchyl acetate, a germination stimulant for root parasitic plants. , 2008, Phytochemistry.

[49]  P. Benfey,et al.  Organization and cell differentiation in lateral roots of Arabidopsis thaliana. , 1997, Development.

[50]  David T. Clarkson,et al.  Factors Affecting Mineral Nutrient Acquisition by Plants , 1985 .

[51]  J. Knox,et al.  The preparation of synthetic analogues of strigol , 1981 .