Carbon nanotube Schottky diode: an atomic perspective

The electron transport properties of semiconducting carbon nanotube (SCNT) Schottky diodes are investigated with atomic models using density functional theory and the non-equilibrium Green's function method. We model the SCNT Schottky diode as a SCNT embedded in the metal electrode, which resembles the experimental set-up. Our study reveals that the rectification behaviour of the diode is mainly due to the asymmetric electron transmission function distribution in the conduction and valence bands and can be improved by changing metal-SCNT contact geometries. The threshold voltage of the diode depends on the electron Schottky barrier height which can be tuned by altering the diameter of the SCNT. Contrary to the traditional perception, the metal-SCNT contact region exhibits better conductivity than the other parts of the diode.

[1]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[2]  Jian Wang,et al.  Ab initio modeling of quantum transport properties of molecular electronic devices , 2001 .

[3]  R. T. Tung Formation of an electric dipole at metal-semiconductor interfaces , 2001 .

[4]  Jeong Won Kang,et al.  Electrostatically telescoping nanotube nonvolatile memory device , 2007 .

[5]  Oshiyama,et al.  Vacancy in Si: Successful description within the local-density approximation. , 1992, Physical review letters.

[6]  E. Kaxiras,et al.  The nature of contact between Pd leads and semiconducting carbon nanotubes. , 2006, Nano letters.

[7]  Antonino La Magna,et al.  Role of contact bonding on electronic transport in metal–carbon nanotube–metal systems , 2006, cond-mat/0610076.

[8]  Jasprit Singh Semiconductor Devices: Basic Principles , 2000 .

[9]  William I. Milne,et al.  Carbon nanotube Schottky diode and directionally dependent field-effect transistor using asymmetrical contacts , 2005 .

[10]  Erich Schlecht,et al.  Carbon nanotube Schottky diodes using Ti-Schottky and Pt-Ohmic contacts for high frequency applications. , 2005, Nano letters.

[11]  Jeffrey Bokor,et al.  Effect of diameter variation in a large set of carbon nanotube transistors. , 2006, Nano letters.

[12]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[13]  T Mizutani,et al.  Relation between conduction property and work function of contact metal in carbon nanotube field-effect transistors , 2006, Nanotechnology.

[14]  Satoshi Watanabe,et al.  Nonequilibrium quantum transport properties of a silver atomic switch. , 2007, Nano letters.

[15]  S. Okada,et al.  Electronic structure of semiconducting nanotubes adsorbed on metal surfaces. , 2005, Physical Review Letters.

[16]  D. Jimenez,et al.  A simple drain current model for Schottky-barrier carbon nanotube field effect transistors , 2007 .

[17]  S. Ciraci,et al.  Electronic structure of the contact between carbon nanotube and metal electrodes , 2003 .

[18]  H. Klauk,et al.  High-performance carbon nanotube field effect transistors with a thin gate dielectric based on a self-assembled monolayer. , 2007, Nano letters.

[19]  Kyeongjae Cho,et al.  Ab initio study of Schottky barriers at metal-nanotube contacts , 2004 .

[20]  Zhao Yang Zeng,et al.  Current rectification by asymmetric molecules: an ab initio study. , 2006, The Journal of chemical physics.

[21]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[22]  Fabrication of n-type nanotube transistors with large-work-function electrodes , 2007 .

[23]  M. Dresselhaus,et al.  Carbon nanotubes : synthesis, structure, properties, and applications , 2001 .

[24]  E. Kaxiras,et al.  DNA nucleoside interaction and identification with carbon nanotubes. , 2007, Nano letters.

[25]  Louis E. Brus,et al.  Controlling Energy-Level Alignments at Carbon Nanotube/Au Contacts , 2003 .

[26]  S. Datta Nanoscale device modeling: the Green’s function method , 2000 .

[27]  Q. Fu,et al.  Schottky diodes from asymmetric metal-nanotube contacts , 2006 .

[28]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[29]  Mark A. Ratner,et al.  Scaling analysis of electron transport through metal-semiconducting carbon nanotube interfaces: Evolution from the molecular limit to the bulk limit , 2004 .

[30]  Enge Wang,et al.  Length-dependent transport properties of ( 12 , 0 ) ∕ ( n , m ) ∕ ( 12 , 0 ) single-wall carbon nanotube heterostructures , 2005 .

[31]  C. Roland,et al.  Quantum transport through short semiconducting nanotubes: A complex band structure analysis , 2004 .