Mixing in time and space for lattice spin systems: A combinatorial view

[1]  Elchanan Mossel,et al.  Glauber dynamics on trees and hyperbolic graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[2]  F. Cesi Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs random fields , 2001 .

[3]  Russell Lyons,et al.  Explicit Isoperimetric Constants and Phase Transitions in the Random-Cluster Model , 2000, math/0008191.

[4]  J. A. Fill,et al.  Stochastic monotonicity and realizable monotonicity , 2000, math/0005267.

[5]  O. Haggstrom,et al.  The random geometry of equilibrium phases , 1999, math/9905031.

[6]  F. Martinelli Lectures on Glauber dynamics for discrete spin models , 1999 .

[7]  Martin E. Dyer,et al.  Path coupling: A technique for proving rapid mixing in Markov chains , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[8]  F. Martinelli,et al.  On the two-dimensional stochastic Ising model in the phase coexistence region near the critical point , 1996 .

[9]  F. Martinelli,et al.  For 2-D lattice spin systems weak mixing implies strong mixing , 1994 .

[10]  F. Martinelli,et al.  Approach to equilibrium of Glauber dynamics in the one phase region , 1994 .

[11]  F. Martinelliz,et al.  Approach to Equilibrium of Glauber Dynamics in the One Phase Region. Ii: the General Case , 1994 .

[12]  J. Berg,et al.  A uniqueness condition for Gibbs measures, with application to the 2-dimensional Ising antiferromagnet , 1993 .

[13]  D. Stroock,et al.  The logarithmic sobolev inequality for discrete spin systems on a lattice , 1992 .

[14]  B. Zegarliński,et al.  On log-Sobolev inequalities for infinite lattice systems , 1990 .

[15]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[16]  R. Holley,et al.  Rapid Convergence to Equilibrium of Stochastic Ising Models in the Dobrushin Shlosman Regime , 1987 .

[17]  R. Dobrushin,et al.  Completely Analytical Gibbs Fields , 1985 .

[18]  D. Richardson Random growth in a tessellation , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.