Effect of target properties and impact velocity on ejection dynamics and ejecta deposition

10 Impact craters are formed by the displacement and ejection of target material. Ejection 11 angles and speeds during the excavation process depend on specific target properties. In order 12 to quantify the influence of the constitutive properties of the target and impact velocity on 13 ejection trajectories we present the results of a systematic numerical parameter study. We 14 have carried out a suite of numerical simulations of impact scenarios with different 15 coefficients of friction (0.0 – 1.0), porosities (0% 42%) and cohesions (0 MPa – 150 MPa). 16 Furthermore, simulations with varying pairs of impact velocity (1-20 km/s) and projectile 17 mass yielding craters of approximately equal volume are examined. We record ejection speed, 18 ejection angle, and the mass of ejected material to determine parameters in scaling 19 relationships, and to calculate the thickness of deposited ejecta by assuming analytical 20 parabolic trajectories under Earth gravity. For the resulting deposits we parameterise the 21 thickness as a function of radial distance by a power law. We find that strength—that is, the 22 coefficient of friction and target cohesion—has the strongest effect on the distribution of 23 ejecta. In contrast, ejecta thickness as a function of distance is very similar for different target 24 porosities and for varying impact velocities larger than ~6 km/s. We compare the derived 25 ejecta deposits with observations from natural craters and experiments. 26 27

[1]  Hiroki Senshu,et al.  Numerical simulation of impact cratering on granular material , 2006 .

[2]  K. Holsapple,et al.  Crater ejecta scaling laws - Fundamental forms based on dimensional analysis , 1983 .

[3]  Fiona K. M. Reiser,et al.  Ejection behavior characteristics in experimental cratering in sandstone targets , 2013 .

[4]  S. Croft Scaling of Complex Craters , 1985 .

[5]  M. Ohnaka A shear failure strength law of rock in the brittle-plastic transition regime , 1995 .

[6]  P. Schultz,et al.  Flow-field center migration during vertical and oblique impacts , 2006 .

[7]  G. Dresen,et al.  Ejecta from experimental impact craters: Particle size distribution and fragmentation energy , 2014 .

[8]  James W. Head,et al.  Radial thickness variation in impact crater ejecta - Implications for lunar basin deposits , 1973 .

[9]  P. Schultz,et al.  Time-resolved studies of hypervelocity vertical impacts into porous particulate targets: Effects of projectile density on early-time coupling and crater growth , 2011 .

[10]  W. Hartmann Impact experiments. I - Ejecta velocity distributions and related results from regolith targets , 1985 .

[11]  Gareth S. Collins,et al.  A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets , 2006 .

[12]  K. Wünnemann,et al.  Diaplectic quartz glass and SiO2 melt experimentally generated at only 5 GPa shock pressure in porous sandstone: Laboratory observations and meso-scale numerical modeling , 2013 .

[13]  C. W. Hirt,et al.  SALE: a simplified ALE computer program for fluid flow at all speeds , 1980 .

[14]  G. Collins,et al.  Mid‐sized complex crater formation in mixed crystalline‐sedimentary targets: Insight from modeling and observation , 2008 .

[15]  Kai Wünnemann,et al.  Scaling impact crater dimensions in cohesive rock by numerical modeling and laboratory experiments , 2015 .

[16]  Kai Wünnemann,et al.  Impacts into quartz sand: Crater formation, shock metamorphism, and ejecta distribution in laboratory experiments and numerical models , 2016 .

[17]  K. Housen Crater ejecta velocities for impacts on rocky bodies , 1992 .

[18]  Erik Asphaug,et al.  Validation of numerical codes for impact and explosion cratering: Impacts on strengthless and metal targets , 2008 .

[19]  F. Schäfer,et al.  Robust optical tracking of individual ejecta particles in hypervelocity impact experiments , 2018 .

[20]  Kevin R. Housen,et al.  Crater Ejecta Scaling Laws , 1983 .

[21]  R. J. Pike Ejecta from large craters on the moon: comments on the geometric model of McGetchin et al. , 1974 .

[22]  T. Krüger,et al.  Structural uplift and ejecta thickness of lunar mare craters: New insights into the formation of complex crater rims , 2017 .

[23]  B. Ivanov,et al.  Launch of martian meteorites in oblique impacts , 2004 .

[24]  P. Schultz,et al.  Early-stage ejecta velocity distribution for vertical hypervelocity impacts into sand , 2010 .

[25]  Gareth S. Collins,et al.  Modeling damage and deformation in impact simulations , 2004 .

[26]  Kevin R. Housen,et al.  Ejecta from impact craters , 2011 .

[27]  P. Schultz,et al.  Asymmetry of ejecta flow during oblique impacts using three-dimensional particle image velocimetry , 2003 .

[28]  David E. Smith,et al.  Thickness of proximal ejecta from the Orientale Basin from Lunar Orbiter Laser Altimeter (LOLA) data: Implications for multi‐ring basin formation , 2011 .

[29]  H. Melosh,et al.  Martian Meteorite Launch: High-Speed Ejecta from Small Craters , 2002, Science.

[30]  K. Housen,et al.  Scaling and reproducibility of craters produced at the Experimental Projectile Impact Chamber (EPIC), Centro de Astrobiología, Spain , 2015 .

[31]  S. Hasegawa,et al.  Impact velocity dependence of transient cratering growth , 2017 .

[32]  N. Artemieva,et al.  Snow carrots after the Chelyabinsk event and model implications for highly porous solar system objects , 2017 .

[33]  Gareth S. Collins,et al.  Improvements to the ɛ-α porous compaction model for simulating impacts into high-porosity solar system objects , 2011 .

[34]  K. Holsapple THE SCALING OF IMPACT PROCESSES IN PLANETARY SCIENCES , 1993 .

[35]  B. A. Ivanov,et al.  Implementation of dynamic strength models into 2D hydrocodes : Applications for atmospheric breakup and impact cratering , 1997 .

[36]  M. Arakawa,et al.  Ejecta velocity distribution of impact craters formed on quartz sand: Effect of projectile density on crater scaling law , 2015 .

[37]  C. Grosse,et al.  Experimental impact cratering: A summary of the major results of the MEMIN research unit , 2018 .

[38]  S. Werner,et al.  The effect of target properties on transient crater scaling for simple craters , 2017 .

[39]  G. Collins,et al.  Numerical modelling of impact melt production in porous rocks , 2008 .

[40]  G. Polkowski,et al.  Experimental hypervelocity impact into quartz sand: Distribution and shock metamorphism of ejecta , 1975 .

[41]  H. J. Melosh,et al.  Dynamic fragmentation in impacts: Hydrocode simulation of laboratory impacts , 1992 .

[42]  R. M. Schmidt,et al.  Meteor Crater: Energy of formation - Implications of centrifuge scaling , 1980 .

[43]  K. Zahnle,et al.  Transfer of mass from Io to Europa and beyond due to cometary impacts , 2008 .

[44]  A. J. Piekutowski,et al.  Formation of bowl-shaped craters , 1980 .

[45]  M. Cintala,et al.  Ejection‐velocity distributions from impacts into coarse‐grained sand , 1999 .

[46]  V. Oberbeck The Role of Ballistic Erosion and Sedimentation in Lunar Stratigraphy , 1975 .

[47]  Kai Wünnemann,et al.  Quantitative analysis of impact-induced seismic signals by numerical modeling , 2017 .

[48]  Kevin R. Housen,et al.  Impact Cratering: A Geologic Process , 1987 .

[49]  M. Cintala,et al.  Ejecta- and Size-Scaling Considerations from Impacts of Glass Projectiles into Sand , 2007 .

[50]  P. Schultz,et al.  Ejecta entrainment by impact-generated ring vortices: Theory and experiments , 1996 .

[51]  P. Schultz,et al.  Calculational investigation of impact cratering dynamics - Early time material motions , 1979 .

[52]  J. Pohl Impact Cratering Mechanics , 1982 .

[53]  P. Farinella,et al.  Collision rates and impact velocities in the Main Asteroid Belt , 1992 .

[54]  H. J. Melosh,et al.  A hydrocode equation of state for SiO2 , 2007 .

[55]  Meng‐Hua Zhu,et al.  Effects of Moon's Thermal State on the Impact Basin Ejecta Distribution , 2017 .

[56]  F. Hörz,et al.  Bunte Breccia of the Ries: Continuous deposits of large impact craters , 1983 .

[57]  Kai Wünnemann,et al.  Numerical modeling of the ejecta distribution and formation of the Orientale basin on the Moon , 2015 .

[58]  N. Artemieva,et al.  Ries crater and suevite revisited—Observations and modeling Part II: Modeling , 2013 .

[59]  Distribution of ejecta from small impact craters , 2013 .

[60]  P. Schultz,et al.  Scouring the surface: Ejecta dynamics and the LCROSS impact event , 2011 .

[61]  Ronggao Liu,et al.  Nitrogen Availability Dampens the Positive Impacts of CO2 Fertilization on Terrestrial Ecosystem Carbon and Water Cycles , 2017 .

[62]  P. Farinella,et al.  Fragment ejection velocities and the collisional evolution of asteroids , 1994 .

[63]  L. Hecht,et al.  Laser‐induced melting experiments: Simulation of short‐term high‐temperature impact processes , 2017 .

[64]  Peter H. Schultz,et al.  Atmospheric effects on ejecta emplacement , 1992 .

[65]  K. Holsapple,et al.  Craters without ejecta , 2012 .

[66]  P. Schultz,et al.  Experimental ejection angles for oblique impacts: Implications for the subsurface flow‐field , 2004 .

[67]  P. Schultz,et al.  Effects of Target Properties on Impact Ejecta Distributions: Time Resolved Experiments and Computational Benchmarking , 2014 .