Bootstrap and Order Statistics for Quantifying Thermal-Hydraulic Code Uncertainties in the Estimation of Safety Margins

In the present work, the uncertainties affecting the safety margins estimated from thermal-hydraulic code calculations are captured quantitatively by resorting to the order statistics and the bootstrap technique. The proposed framework of analysis is applied to the estimation of the safety margin, with its confidence interval, of the maximum fuel cladding temperature reached during a complete group distribution blockage scenario in a RBMK-1500 nuclear reactor.

[1]  R. Mendizabal,et al.  Safety margins estimation method considering uncertainties within the risk- informed decision-making framework , 2006 .

[2]  Geoffrey M. Jacquez,et al.  Computer-Intensive Methods , 2006 .

[3]  Graham B. Wallis,et al.  Evaluation of nuclear safety from the outputs of computer codes in the presence of uncertainties , 2004, Reliab. Eng. Syst. Saf..

[4]  Enrico Zio,et al.  Using genetic algorithms for calibrating simplified models of nuclear reactor dynamics , 2004 .

[5]  Dimitris N. Politis,et al.  Computer-intensive methods in statistical analysis , 1998, IEEE Signal Process. Mag..

[6]  Enrico Zio,et al.  Variance decomposition-based sensitivity analysis via neural networks , 2003, Reliab. Eng. Syst. Saf..

[7]  Jon C. Helton,et al.  Alternative representations of epistemic uncertainty , 2004, Reliab. Eng. Syst. Saf..

[8]  Abraham Wald,et al.  An Extension of Wilks' Method for Setting Tolerance Limits , 1943 .

[9]  G. Apostolakis The concept of probability in safety assessments of technological systems. , 1990, Science.

[10]  S. S. Wilks Determination of Sample Sizes for Setting Tolerance Limits , 1941 .

[11]  Algirdas Kaliatka,et al.  Best estimate analysis of group distribution header blockage events in RBMK-1500 reactors , 2005 .

[12]  Algirdas Kaliatka,et al.  State-of-the-art computer code RELAP5 validation with RBMK-related separate phenomena data , 2003 .

[13]  Bolado Lavin Ricardo,et al.  Input Parameters Distribution Sensitivity Study of RBMK-1500 Reactor One Group Distribution Header Complete Blockage Scenario , 2005 .

[14]  Attila Guba,et al.  Statistical aspects of best estimate method - I , 2003, Reliab. Eng. Syst. Saf..

[15]  Boualem Boashash,et al.  The bootstrap and its application in signal processing , 1998, IEEE Signal Process. Mag..

[16]  Georges A. Heinrich,et al.  Changing Times, Testing Times: A Bootstrap Analysis of Poverty and Inequality Using the Paco Data Base , 1998 .

[17]  Cornelia J. Swanepoel THE TEACHING AND PRACTICAL IMPLEMENTATION OF THE NON-PARAMETRIC BOOTSTRAP , 2002 .

[18]  S. S. Wilks Statistical Prediction with Special Reference to the Problem of Tolerance Limits , 1942 .

[19]  E. Ziegel,et al.  Bootstrapping: A Nonparametric Approach to Statistical Inference , 1993 .