Sequential Parameter Estimation in Stochastic Volatility Models with Jumps

This paper analyzes the sequential lear ning problem for both parameters and states in a stochastic volatility model with jumps. We extend two existing algorithms, Storvik’s (2002) particle fi ltering algorithm and Polson, Stroud and Muller’s (2003) practical fi ltering algorithm, to inc orporate jumps. We analyze the performance of these approaches using both simulate d and S&P 500 index return data. We fi nd that the particle fi lter provides more accurate sequential inference than the practical fi ltering approach. The di ff erences are minor using simulated data, but greater using S&P 500 index data as the adapted particle fi ltering algorithm we use e ffi ciently handles outliers. We analyze the implications of learning about jump parameters for option pricing and fi nd that parameter learning generates important implications for option pricing.

[1]  Nicholas G. Polson,et al.  Evidence for and the Impact of Jumps in Volatility and Returns , 2001 .

[2]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[3]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[4]  A. Gallant,et al.  Which Moments to Match? , 1995, Econometric Theory.

[5]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[6]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study $ , 2002 .

[7]  Jonathan R. Stroud,et al.  Sequential Optimal Portfolio Performance: Market and Volatility Timing , 2002 .

[8]  Luca Benzoni,et al.  Can Standard Preferences Explain the Prices of Out of the Money S&P 500 Put Options , 2005 .

[9]  Nicholas G. Polson,et al.  Practical filtering with sequential parameter learning , 2008 .

[10]  A. Pedersen A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations , 1995 .

[11]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[12]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[13]  Nicholas G. Polson,et al.  State Space and Unobserved Component Models: Practical filtering for stochastic volatility models , 2004 .

[14]  J. Berger,et al.  Bayesian Inference for Derivative Prices , 2003 .

[15]  Nicholas G. Polson,et al.  Nonlinear Filtering of Stochastic Differential Equations with Jumps , 2002 .

[16]  P. Fearnhead MCMC, sufficient statistics and particle filters. , 2002 .

[17]  David M. Kreps,et al.  Rational Learning and Rational Expectations , 1987 .

[18]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[19]  P. Fearnhead,et al.  Improved particle filter for nonlinear problems , 1999 .

[20]  G. Roberts,et al.  On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm , 2001 .

[21]  George Tauchen,et al.  Cross-Stock Comparisons of the Relative Contribution of Jumps to Total Price Variance , 2012 .

[22]  Bjørn Eraker MCMC Analysis of Diffusion Models With Application to Finance , 2001 .

[23]  S. Taylor Financial Returns Modelled by the Product of Two Stochastic Processes , 1961 .

[24]  David S. Bates Post-&Apos;87 Crash Fears in S&P 500 Futures Options , 1997 .

[25]  Nicholas G. Polson,et al.  MCMC Methods for Continuous-Time Financial Econometrics , 2003 .

[26]  G. Storvik Particle filters in state space models with the presence of unknown static parameters YYYY No org found YYY , 2000 .

[27]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[28]  Carlos M. Carvalho,et al.  Simulation-based sequential analysis of Markov switching stochastic volatility models , 2007, Comput. Stat. Data Anal..

[29]  A. Gallant,et al.  Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes , 2002 .

[30]  Monika Piazzesi Bond Yields and the Federal Reserve , 2005, Journal of Political Economy.

[31]  Genshiro Kitagawa,et al.  Monte Carlo Smoothing and Self-Organising State-Space Model , 2001, Sequential Monte Carlo Methods in Practice.

[32]  Jun Pan,et al.  An Equilibrium Model of Rare-Event Premia and Its Implication for Option Smirks , 2005 .

[33]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[34]  N. Shephard,et al.  Markov chain Monte Carlo methods for stochastic volatility models , 2002 .

[35]  Luca Benzoni,et al.  An Empirical Investigation of Continuous-Time Equity Return Models , 2001 .

[36]  N. Shephard,et al.  Likelihood INference for Discretely Observed Non-linear Diffusions , 2001 .

[37]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[38]  D. Duffie,et al.  Simulated Moments Estimation of Markov Models of Asset Prices , 1990 .

[39]  Barr Rosenberg. The Behavior of Random Variables with Nonstationary Variance and the Distribution of Security Prices , 1972 .

[40]  Bjørn Eraker Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices , 2004 .

[41]  Peter E. Rossi,et al.  Bayesian analysis of stochastic volatility models with fat-tails and correlated errors , 2004 .

[42]  Simon J. Godsill,et al.  Fixed-lag smoothing using sequential importance sampling , 1999 .

[43]  Jón Dańıelsson Stochastic volatility in asset prices estimation with simulated maximum likelihood , 1994 .

[44]  Robert M. Townsend,et al.  Forecasting the Forecasts of Others , 1983, Journal of Political Economy.

[45]  Michael W. Brandt,et al.  Simulated Likelihood Estimation of Diffusions with an Application to Exchange Rate Dynamics in Incomplete Markets , 2001 .

[46]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models: Comments: Reply , 1994 .

[47]  Lars Peter Hansen,et al.  Recursive Robust Estimation and Control Without Commitment , 2007, J. Econ. Theory.

[48]  Yacine Aït-Sahalia,et al.  Disentangling diffusion from jumps , 2004 .

[49]  A. Gallant,et al.  Estimation of Stochastic Volatility Models with Diagnostics , 1995 .

[50]  F. Diebold,et al.  Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility , 2005, The Review of Economics and Statistics.

[51]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[52]  N. Chopin A sequential particle filter method for static models , 2002 .

[53]  A. Doucet,et al.  Parameter estimation in general state-space models using particle methods , 2003 .

[54]  A. Gallant,et al.  Alternative models for stock price dynamics , 2003 .

[55]  N. Shephard,et al.  Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation , 2005 .