A lifted square formulation for certifiable Schubert calculus

[1]  Steven L. Kleiman,et al.  The transversality of a general translate , 1974 .

[2]  S. Smale Newton’s Method Estimates from Data at One Point , 1986 .

[3]  William Fulton,et al.  Flags, Schubert polynomials, degeneracy loci, and determinantal formulas , 1992 .

[4]  Frank Sottile,et al.  Real Schubert Calculus: Polynomial Systems and a Conjecture of Shapiro and Shapiro , 1999, Exp. Math..

[5]  Ravi Vakil Schubert induction , 2003 .

[6]  Jonathan D. Hauenstein,et al.  Software for numerical algebraic geometry: a paradigm and progress towards its implementation , 2008 .

[7]  Frank Sottile,et al.  Galois groups of Schubert problems via homotopy computation , 2007, Math. Comput..

[8]  Mohab Safey El Din,et al.  Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1, 1): Algorithms and complexity , 2010, J. Symb. Comput..

[9]  Anton Leykin,et al.  Certified Numerical Homotopy Tracking , 2009, Exp. Math..

[10]  Frank Sottile,et al.  ALGORITHM XXX: ALPHACERTIFIED: CERTIFYING SOLUTIONS TO POLYNOMIAL SYSTEMS , 2011 .

[11]  Frank Sottile,et al.  Experimentation in the Schubert Calculus , 2013 .

[12]  Anton Leykin,et al.  Robust Certified Numerical Homotopy Tracking , 2011, Foundations of Computational Mathematics.

[13]  Jonathan D. Hauenstein,et al.  Certified predictor-corrector tracking for Newton homotopies , 2016, J. Symb. Comput..

[14]  Frank Sottile,et al.  A Primal-Dual Formulation for Certifiable Computations in Schubert Calculus , 2014, Found. Comput. Math..