A lifted square formulation for certifiable Schubert calculus
暂无分享,去创建一个
[1] Steven L. Kleiman,et al. The transversality of a general translate , 1974 .
[2] S. Smale. Newton’s Method Estimates from Data at One Point , 1986 .
[3] William Fulton,et al. Flags, Schubert polynomials, degeneracy loci, and determinantal formulas , 1992 .
[4] Frank Sottile,et al. Real Schubert Calculus: Polynomial Systems and a Conjecture of Shapiro and Shapiro , 1999, Exp. Math..
[5] Ravi Vakil. Schubert induction , 2003 .
[6] Jonathan D. Hauenstein,et al. Software for numerical algebraic geometry: a paradigm and progress towards its implementation , 2008 .
[7] Frank Sottile,et al. Galois groups of Schubert problems via homotopy computation , 2007, Math. Comput..
[8] Mohab Safey El Din,et al. Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1, 1): Algorithms and complexity , 2010, J. Symb. Comput..
[9] Anton Leykin,et al. Certified Numerical Homotopy Tracking , 2009, Exp. Math..
[10] Frank Sottile,et al. ALGORITHM XXX: ALPHACERTIFIED: CERTIFYING SOLUTIONS TO POLYNOMIAL SYSTEMS , 2011 .
[11] Frank Sottile,et al. Experimentation in the Schubert Calculus , 2013 .
[12] Anton Leykin,et al. Robust Certified Numerical Homotopy Tracking , 2011, Foundations of Computational Mathematics.
[13] Jonathan D. Hauenstein,et al. Certified predictor-corrector tracking for Newton homotopies , 2016, J. Symb. Comput..
[14] Frank Sottile,et al. A Primal-Dual Formulation for Certifiable Computations in Schubert Calculus , 2014, Found. Comput. Math..