The toughening mechanism of nacre and structural materials inspired by nacre

Abstract The structure and the toughening mechanism of nacre have been the subject of intensive research over the last 30 years. This interest originates from nacre’s excellent combination of strength, stiffness and toughness, despite its high, for a biological material, volume fraction of inorganic phase, typically 95%. Owing to the improvement of nanoscale measurement and observation techniques, significant progress has been made during the last decade in understanding the mechanical properties of nacre. The structure, microscopic deformation behavior and toughening mechanism on the order of nanometers have been investigated, and the importance of hierarchical structure in nacre has been recognized. This research has led to the fabrication of multilayer composites and films inspired by nacre with a layer thickness below 1 μm. Some of these materials reproduce the inorganic/organic interaction and hierarchical structure beyond mere morphology mimicking. In the first part of this review, we focus on the hierarchical architecture, macroscopic and microscopic deformation and fracture behavior, as well as toughening mechanisms in nacre. Then we summarize recent progress in the fabrication of materials inspired by nacre taking into consideration its mechanical properties.

[1]  Xiaodong Li,et al.  Deformation Strengthening of Biopolymer in Nacre , 2011 .

[2]  T. Sumitomo,et al.  Nanoscale structure and mechanical behavior of growth lines in shell of abalone Haliotis gigantea. , 2011, Journal of structural biology.

[3]  M. Meyers,et al.  Growth of nacre in abalone: Seasonal and feeding effects , 2011 .

[4]  Ludwig J. Gauckler,et al.  Platelet-reinforced polymer matrix composites by combined gel-casting and hot-pressing. Part I: Polypropylene matrix composites , 2010 .

[5]  S. Berland,et al.  Ultrastructure, chemistry and mineralogy of the growing shell of the European abalone Haliotis tuberculata. , 2010, Journal of Structural Biology.

[6]  Joachim Bill,et al.  Synthesis and mechanical behavior of bioinspired ZrO2–organic nacre-like laminar nanocomposites , 2010 .

[7]  Shuhong Yu,et al.  Biologically inspired, strong, transparent, and functional layered organic-inorganic hybrid films. , 2010, Angewandte Chemie.

[8]  O. Ikkala,et al.  Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. , 2010, Nano letters.

[9]  M. Meyers,et al.  Interfacial shear strength in abalone nacre. , 2009, Journal of the mechanical behavior of biomedical materials.

[10]  P. Aken,et al.  Toughening through nature-adapted nanoscale design. , 2009, Nano letters.

[11]  Y. Kagawa,et al.  Extensive deformation behavior of an all-oxide Al_2O_3-TiO_2 nanostructured multilayer ceramic at room temperature , 2009 .

[12]  Yasuaki Seki,et al.  The role of organic intertile layer in abalone nacre , 2009 .

[13]  Takashi Kato,et al.  An Acidic Matrix Protein, Pif, Is a Key Macromolecule for Nacre Formation , 2009, Science.

[14]  Arcan F. Dericioglu,et al.  An efficient hybrid conventional method to fabricate nacre-like bulk nano-laminar composites , 2009 .

[15]  K. Saruwatari,et al.  Nucleation and growth of aragonite crystals at the growth front of nacres in pearl oyster, Pinctada fucata. , 2009, Biomaterials.

[16]  Wei-Han Huang,et al.  Bioinspired Assembly of Colloidal Nanoplatelets by Electric Field , 2009 .

[17]  João F Mano,et al.  Biomimetic design of materials and biomaterials inspired by the structure of nacre , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Xiaodong Li,et al.  Unveiling the formation mechanism of pseudo-single-crystal aragonite platelets in nacre. , 2009, Physical review letters.

[19]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[20]  T. Sumitomo,et al.  Transmission electron microscopy observation of nanoscale deformation structures in nacre , 2008 .

[21]  Yong Huang,et al.  Special assembly of laminated nanocomposite that mimics nacre , 2008 .

[22]  Yong Huang,et al.  Poly(amic acid)–clay nacrelike composites prepared by electrophoretic deposition , 2008 .

[23]  T. Sumitomo,et al.  In situ transmission electron microscopy observation of reversible deformation in nacre organic matrix , 2008 .

[24]  Ludwig J. Gauckler,et al.  Bioinspired Design and Assembly of Platelet Reinforced Polymer Films , 2008, Science.

[25]  Francois Barthelat,et al.  Biomimetics for next generation materials , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  P. Löbmann From Sol-Gel Processing to Bio-Inspired Materials Synthesis , 2007 .

[27]  A. Waas,et al.  Ultrastrong and Stiff Layered Polymer Nanocomposites , 2007, Science.

[28]  Jialin Sun,et al.  Polyacrylamide-clay nacre-like nanocomposites prepared by electrophoretic deposition , 2007 .

[29]  J. Cartwright,et al.  The dynamics of nacre self-assembly , 2007, Journal of The Royal Society Interface.

[30]  Xiaodong Li Nanoscale structural and mechanical characterization of natural nanocomposites: Seashells , 2007 .

[31]  Z. Tang,et al.  Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled nanocomposites. , 2007, Nano letters.

[32]  Joachim Bill,et al.  Nanomechanical Properties of Bioinspired Organic–Inorganic Composite Films , 2007 .

[33]  Horacio Dante Espinosa,et al.  An Experimental Investigation of Deformation and Fracture of Nacre–Mother of Pearl , 2007 .

[34]  K. Katti,et al.  Mineral proximity influences mechanical response of proteins in biological mineral-protein hybrid systems. , 2007, Biomacromolecules.

[35]  F. Barthelat,et al.  On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure , 2007 .

[36]  M. Brendlé,et al.  Tribological behaviour of nacre—Influence of the environment on the elementary wear processes , 2006 .

[37]  K. Katti,et al.  Impact of β-Sheet Conformations on the Mechanical Response of Protein in Biocomposites , 2006 .

[38]  Xiaodong Li,et al.  In situ observation of nanograin rotation and deformation in nacre. , 2006, Nano letters.

[39]  G. Mayer,et al.  New classes of tough composite materials—Lessons from natural rigid biological systems , 2006 .

[40]  K. Vecchio,et al.  Mechanical properties and structure of Strombus gigas, Tridacna gigas, and Haliotis rufescens sea shells: A comparative study , 2006 .

[41]  Yuya Oaki,et al.  Bridged Nanocrystals in Biominerals and Their Biomimetics: Classical Yet Modern Crystal Growth on the Nanoscale , 2006 .

[42]  K. Katti,et al.  Dynamic nanomechanical response of nacre , 2006 .

[43]  Horacio Dante Espinosa,et al.  Mechanical properties of nacre constituents and their impact on mechanical performance , 2006 .

[44]  D. Kaplan,et al.  Unfolding the multi-length scale domain structure of silk fibroin protein , 2006 .

[45]  Eduardo Saiz,et al.  Freezing as a Path to Build Complex Composites , 2006, Science.

[46]  Steve Weiner,et al.  Mollusk shell formation: a source of new concepts for understanding biomineralization processes. , 2006, Chemistry.

[47]  G. Mayer,et al.  Rigid Biological Systems as Models for Synthetic Composites , 2005, Science.

[48]  Xavier Bourrat,et al.  Multiscale structure of sheet nacre. , 2005, Biomaterials.

[49]  Yuya Oaki,et al.  The hierarchical architecture of nacre and its mimetic material. , 2005, Angewandte Chemie.

[50]  S. Šimunović,et al.  A continuous damage random thresholds model for simulating the fracture behavior of nacre. , 2005, Biomaterials.

[51]  F. Vollrath,et al.  Conformational polymorphism, stability and aggregation in spider dragline silks proteins. , 2005, International journal of biological macromolecules.

[52]  M. Antonietti,et al.  Amorphous layer around aragonite platelets in nacre. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Robert M. Panas,et al.  Nanoscale Morphology and Indentation of Individual Nacre Tablets from the Gastropod Mollusc Trochus Niloticus , 2005 .

[54]  Y. Oaki,et al.  Hierarchically Organized Superstructure Emerging from the Exquisite Association of Inorganic Crystals, Organic Polymers, and Dyes: A Model Approach Towards Suprabiomineral Materials , 2005 .

[55]  M. Darder,et al.  Functional biopolymer nanocomposites based on layered solids , 2005 .

[56]  K. Katti,et al.  Platelet interlocks are the key to toughness and strength in nacre , 2005 .

[57]  S. Valiyaveettil,et al.  CaCO3 biomineralization: acidic 8-kDa proteins isolated from aragonitic abalone shell nacre can specifically modify calcite crystal morphology. , 2005, Biomacromolecules.

[58]  X. Bourrat,et al.  Sheet nacre growth mechanism: a Voronoi model. , 2005, Journal of structural biology.

[59]  Marc A. Meyers,et al.  Growth and structure in abalone shell , 2005 .

[60]  Baohua Ji,et al.  Mechanical properties of nanostructure of biological materials , 2004 .

[61]  Yuh J. Chao,et al.  Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone , 2004 .

[62]  David L Kaplan,et al.  Mapping domain structures in silks from insects and spiders related to protein assembly. , 2004, Journal of molecular biology.

[63]  M. Fritz,et al.  The nacre protein perlucin nucleates growth of calcium carbonate crystals , 2003, Journal of microscopy.

[64]  K. Schulten,et al.  Molecular biomimetics: nanotechnology through biology , 2003, Nature materials.

[65]  A K Soh,et al.  Structural and mechanical properties of the organic matrix layers of nacre. , 2003, Biomaterials.

[66]  David L. Kaplan,et al.  Mechanism of silk processing in insects and spiders , 2003, Nature.

[67]  Y. Bai,et al.  Effects of nanostructures on the fracture strength of the interfaces in nacre , 2003 .

[68]  Zhiyong Tang,et al.  Nanostructured artificial nacre , 2003, Nature materials.

[69]  E. Zolotoyabko,et al.  Microstructure of natural plywood-like ceramics: a study by high-resolution electron microscopy and energy-variable X-ray diffraction , 2003 .

[70]  S. Weiner,et al.  Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. , 2002, The Journal of experimental zoology.

[71]  Takashi Kato,et al.  Calcium Carbonate–Organic Hybrid Materials , 2002 .

[72]  A. Belcher,et al.  Structural and microstructural characterization of the growth lines and prismatic microarchitecture in red abalone shell and the microstructures of abalone flat pearls , 2002 .

[73]  H. Hansma,et al.  Segmented nanofibers of spider dragline silk: Atomic force microscopy and single-molecule force spectroscopy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Zhigang Suo,et al.  Model for the robust mechanical behavior of nacre , 2001 .

[75]  Zhigang Suo,et al.  Deformation mechanisms in nacre , 2001 .

[76]  S. Weiner,et al.  Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. , 2001, Journal of structural biology.

[77]  K. Vecchio,et al.  Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells , 2001 .

[78]  P. Hansma,et al.  Direct observation of the transition from calcite to aragonite growth as induced by abalone shell proteins. , 2000, Biophysical journal.

[79]  Takashi Kato Polymer/Calcium Carbonate Layered Thin‐Film Composites , 2000 .

[80]  R. Ballarini,et al.  Structural basis for the fracture toughness of the shell of the conch Strombus gigas , 2000, Nature.

[81]  F. Cui,et al.  Polymorph and morphology of calcium carbonate crystals induced by proteins extracted from mollusk shell , 2000 .

[82]  Marc A. Meyers,et al.  Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells , 2000 .

[83]  C S Choi,et al.  A study of the correlation between organic matrices and nanocomposite materials in oyster shell formation. , 2000, Biomaterials.

[84]  Takashi Kato,et al.  Layered Thin-Film Composite Consisting of Polymers and Calcium Carbonate: A Novel Organic/Inorganic Material with an Organized Structure , 2000 .

[85]  M. Sarikaya Biomimetics: materials fabrication through biology. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[87]  Paul K. Hansma,et al.  Methods for fabricating and characterizing a new generation of biomimetic materials , 1999 .

[88]  Jinjiang He,et al.  Experimental observations on the mechanical properties of nanoscale ceramic/Teflon multilayers , 1998 .

[89]  P. Hansma,et al.  Molecular Cloning and Characterization of Lustrin A, a Matrix Protein from Shell and Pearl Nacre of Haliotis rufescens * , 1997, The Journal of Biological Chemistry.

[90]  Paul K. Hansma,et al.  Does Abalone Nacre Form by Heteroepitaxial Nucleation or by Growth through Mineral Bridges , 1997 .

[91]  T. Fujikawa,et al.  Structures of mollusc shell framework proteins , 1997, Nature.

[92]  X. H. Wu,et al.  Control of crystal phase switching and orientation by soluble mollusc-shell proteins , 1996, Nature.

[93]  Stephen Mann,et al.  Critical Transitions in the Biofabrication of Abalone Shells and Flat Pearls , 1996 .

[94]  R. Mullen,et al.  A biomimetic example of brittle toughening: (I) steady state multiple cracking , 1996 .

[95]  S. Weiner,et al.  Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules , 1996, Science.

[96]  F. Cui,et al.  Observations of damage morphologies in nacre during deformation and fracture , 1995 .

[97]  M. Sarikaya,et al.  An introduction to biomimetics: A structural viewpoint , 1994, Microscopy research and technique.

[98]  R. Lewis,et al.  Structure of a protein superfiber: spider dragline silk. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[99]  A. P. Jackson,et al.  Comparison of nacre with other ceramic composites , 1990 .

[100]  C. Richardson Exogenous and endogenous rhythms of band formation in the shell of the clam Tapes philippinarum (Adams et Reeve, 1850) , 1988 .

[101]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[102]  C. Richardson Microgrowth patterns in the shell of the Malaysian cockle Anadara granosa (L.) and their use in age determination , 1987 .

[103]  M. E. Demont,et al.  Spider silk as rubber , 1984, Nature.

[104]  Steve Weiner,et al.  Macromolecules in mollusc shells and their functions in biomineralization , 1984 .

[105]  A. Wheeler,et al.  Control of calcium carbonate nucleation and crystal growth by soluble matrx of oyster shell. , 1981, Science.

[106]  S. Weiner,et al.  X‐ray diffraction study of the insoluble organic matrix of mollusk shells , 1980 .

[107]  John D. Currey,et al.  Mechanical properties of mother of pearl in tension , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[108]  Alwyn Williams Growth and Structure of the Shell of Living Articulate Bachiopods , 1966, Nature.

[109]  N. Watabe DECALCIFICATION OF THIN SECTIONS FOR ELECTRON MICROSCOPE STUDIES OF CRYSTAL-MATRIX RELATIONSHIPS IN MOLLUSC SHELLS , 1963, The Journal of cell biology.

[110]  N. Watabe,et al.  STUDIES ON SHELL FORMATION , 1961, The Journal of biophysical and biochemical cytology.

[111]  A. Belcher,et al.  The interstitial crystal-nucleating sheet in molluscan Haliotis rufescens shell: a bio-polymeric composite. , 2011, Journal of structural biology.

[112]  T. Sumitomo,et al.  Fabrication of nature-inspired bulk laminar composites by a powder processing , 2010 .

[113]  Marc André Meyers,et al.  Mechanical strength of abalone nacre: role of the soft organic layer. , 2008, Journal of the mechanical behavior of biomedical materials.

[114]  M. Meyers,et al.  The growth of nacre in the abalone shell. , 2008, Acta biomaterialia.

[115]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[116]  Jiming Hu,et al.  Meretrix lusoria--a natural biocomposite material: in situ analysis of hierarchical fabrication and micro-hardness. , 2006, Micron.

[117]  H. Nakahara,et al.  An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs , 2005, Calcified Tissue Research.

[118]  Xiaodong Li,et al.  Micro/nanomechanical characterization of a natural nanocomposite material—the shell of Pectinidae , 2003 .

[119]  S. Weiner,et al.  Design strategies in mineralized biological materials , 1997 .

[120]  M. Avalos-Borja,et al.  Toward a chronology of Haliotis fulgens, with a review of abalone shell microstructure , 1995 .

[121]  A. Al-Azri,et al.  Shell growth checks and growth of the Omani Abalone Haliotis mariae , 1995 .