Multi-omics profiling reveals microRNA-mediated insulin signaling networks

[1]  Hsien-Da Huang,et al.  miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions , 2017, Nucleic Acids Res..

[2]  I. Jardin,et al.  Involvement of stanniocalcins in the deregulation of glycaemia in obese mice and type 2 diabetic patients , 2017, Journal of cellular and molecular medicine.

[3]  M. Stoffel,et al.  MicroRNAs as stress regulators in pancreatic beta cells and diabetes , 2017, Molecular metabolism.

[4]  D. Turnbull,et al.  Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells , 2016, Neuro-oncology.

[5]  M. Karimi,et al.  Differentiation of Human-Induced Pluripotent Stem Cells Into Insulin-Producing Clusters by MicroRNA-7. , 2016, Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation.

[6]  R. Schmid,et al.  Characterization of Micro-RNA Changes during the Progression of Type 2 Diabetes in Zucker Diabetic Fatty Rats , 2016, International journal of molecular sciences.

[7]  D. Fraser,et al.  MicroRNAs in Diabetic Nephropathy: From Biomarkers to Therapy , 2016, Current Diabetes Reports.

[8]  A. Shalev,et al.  Cytokines Regulate β-Cell Thioredoxin-interacting Protein (TXNIP) via Distinct Mechanisms and Pathways* , 2016, The Journal of Biological Chemistry.

[9]  Yuehui Ma,et al.  Role of microRNA-21 in the formation of insulin-producing cells from pancreatic progenitor cells. , 2016, Biochimica et biophysica acta.

[10]  P. Sharp,et al.  Elucidating MicroRNA Regulatory Networks Using Transcriptional, Post-transcriptional, and Histone Modification Measurements. , 2015, Cell reports.

[11]  Hsien-Da Huang,et al.  miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database , 2015, Nucleic Acids Res..

[12]  S. Robbins,et al.  Glioma invasion mediated by the p75 neurotrophin receptor (p75NTR/CD271) requires regulated interaction with PDLIM1 , 2015, Oncogene.

[13]  J. Griffin,et al.  De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose , 2015, Biological reviews of the Cambridge Philosophical Society.

[14]  R. Regazzi,et al.  Insulin secretion in health and disease: nutrients dictate the pace , 2015, Proceedings of the Nutrition Society.

[15]  L. Satin,et al.  The Ia-2β intronic miRNA, miR-153, is a negative regulator of insulin and dopamine secretion through its effect on the Cacna1c gene in mice , 2015, Diabetologia.

[16]  Junfang Zhan,et al.  Profiling peripheral microRNAs in obesity and type 2 diabetes mellitus , 2015, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[17]  M. Stoffel,et al.  The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes , 2015, Nature Medicine.

[18]  R. Urrutia,et al.  Gestational Diabetes Mellitus Impairs Fetal Endothelial Cell Functions Through a Mechanism Involving MicroRNA-101 and Histone Methyltransferase Enhancer of Zester Homolog-2 , 2015, Arteriosclerosis, thrombosis, and vascular biology.

[19]  M. Stoffel,et al.  Modulation of microRNA-375 expression alters voltage-gated Na+ channel properties and exocytosis in insulin-secreting cells , 2015, Acta physiologica.

[20]  Hongmei Zhu,et al.  Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies , 2015, Diabetologia.

[21]  Yi-Ming Sun,et al.  Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling , 2015, BMC Genomics.

[22]  F. Liu,et al.  miR-30 Promotes Thermogenesis and the Development of Beige Fat by Targeting RIP140 , 2015, Diabetes.

[23]  M. Bugliani,et al.  MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion , 2015, Acta Diabetologica.

[24]  L. Eliasson,et al.  Regulation of Pancreatic Beta Cell Stimulus-Secretion Coupling by microRNAs , 2014, Genes.

[25]  F. Liu,et al.  Glucocorticoids Transcriptionally Regulate miR-27b Expression Promoting Body Fat Accumulation Via Suppressing the Browning of White Adipose Tissue , 2014, Diabetes.

[26]  S. Bandyopadhyay,et al.  Influence of miRNA in insulin signaling pathway and insulin resistance: micro‐molecules with a major role in type‐2 diabetes , 2014, Wiley interdisciplinary reviews. RNA.

[27]  Honghao Zhou,et al.  Type 2 diabetes mellitus‐related genetic polymorphisms in microRNAs and microRNA target sites (MicroRNAs中与2型糖尿病相关的基因多态性及microRNA靶位) , 2014, Journal of diabetes.

[28]  L. Chan,et al.  Emerging roles of hematopoietic cells in the pathobiology of diabetic complications , 2014, Trends in Endocrinology & Metabolism.

[29]  Kun Wang,et al.  Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1 , 2014, Oncogene.

[30]  Sumio Sugano,et al.  Screening for possible miRNA-mRNA associations in a colon cancer cell line. , 2014, Gene.

[31]  Chengyang Liu,et al.  MicroRNA-7 Regulates the mTOR Pathway and Proliferation in Adult Pancreatic β-Cells , 2013, Diabetes.

[32]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[33]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[34]  Emmanuel Barillot,et al.  ncPRO-seq: a tool for annotation and profiling of ncRNAs in sRNA-seq data , 2012, Bioinform..

[35]  C. Ricordi,et al.  Antisense miR-7 Impairs Insulin Expression in Developing Pancreas and in Cultured Pancreatic Buds , 2012, Cell transplantation.

[36]  Parantu K. Shah,et al.  Integrative analysis of gene and miRNA expression profiles with transcription factor–miRNA feed-forward loops identifies regulators in human cancers , 2012, Nucleic acids research.

[37]  Gabriele Sales,et al.  MAGIA2: from miRNA and genes expression data integrative analysis to microRNA–transcription factor mixed regulatory circuits (2012 update) , 2012, Nucleic Acids Res..

[38]  D. Keller,et al.  Regulation of microRNA-375 by cAMP in pancreatic β-cells. , 2012, Molecular endocrinology.

[39]  Sebastian D. Mackowiak,et al.  miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades , 2011, Nucleic acids research.

[40]  Panayiotis V. Benos,et al.  mirConnX: condition-specific mRNA-microRNA network integrator , 2011, Nucleic Acids Res..

[41]  J. Haefliger,et al.  Role for inducible cAMP early repressor in promoting pancreatic beta cell dysfunction evoked by oxidative stress in human and rat islets , 2011, Diabetologia.

[42]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[43]  R. Regazzi,et al.  Diabetes mellitus, a microRNA-related disease? , 2011, Translational research : the journal of laboratory and clinical medicine.

[44]  J. Brüning,et al.  Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism , 2011, Nature Cell Biology.

[45]  Ming Lu,et al.  TransmiR: a transcription factor–microRNA regulation database , 2009, Nucleic Acids Res..

[46]  M. Rupnik,et al.  Pancreatic beta cell lines and their applications in diabetes mellitus research. , 2010, ALTEX.

[47]  R. Derynck,et al.  Essential role of TGF-beta signaling in glucose-induced cell hypertrophy. , 2009, Developmental cell.

[48]  D. Russell,et al.  Cholesterol 24-hydroxylase: an enzyme of cholesterol turnover in the brain. , 2009, Annual review of biochemistry.

[49]  Eran Hornstein,et al.  The Promoter of the pri-miR-375 Gene Directs Expression Selectively to the Endocrine Pancreas , 2009, PloS one.

[50]  N. Lynam‐Lennon,et al.  The roles of microRNA in cancer and apoptosis , 2009, Biological reviews of the Cambridge Philosophical Society.

[51]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[52]  G. Taubes Paradoxical Effects of Tightly Controlled Blood Sugar , 2008, Science.

[53]  M. Walker Role of MicroRNA in Pancreatic β-Cells , 2008, Diabetes.

[54]  Nathan L. Vanderford,et al.  Glucose regulation of insulin gene expression in pancreatic beta-cells. , 2008, The Biochemical journal.

[55]  N. Baroukh,et al.  miR-375 Targets 3′-Phosphoinositide–Dependent Protein Kinase-1 and Regulates Glucose-Induced Biological Responses in Pancreatic β-Cells , 2008, Diabetes.

[56]  M. Walker Role of MicroRNA in pancreatic beta-cells: where more is less. , 2008, Diabetes.

[57]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[58]  John J Rossi,et al.  MicroRNAs in Disease and Potential Therapeutic Applications. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[59]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[60]  Peter S Linsley,et al.  MicroRNAs and Cell Cycle Regulation , 2007, Cell cycle.

[61]  N. Baroukh,et al.  MicroRNA-124a Regulates Foxa2 Expression and Intracellular Signaling in Pancreatic β-Cell Lines* , 2007, Journal of Biological Chemistry.

[62]  Dirk Hadaschik,et al.  Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. , 2007, The Biochemical journal.

[63]  M. F. Polat,et al.  Effects of type 2 diabetes mellitus on plasma fatty acid composition and cholesterol content of erythrocyte and leukocyte membranes , 2006, Acta Diabetologica.

[64]  Seung K. Kim,et al.  Intrinsic Regulators of Pancreatic β-Cell Proliferation , 2006 .

[65]  Jan Krüger,et al.  RNAhybrid: microRNA target prediction easy, fast and flexible , 2006, Nucleic Acids Res..

[66]  Y. Kido,et al.  Ablation of PDK1 in pancreatic β cells induces diabetes as a result of loss of β cell mass , 2006, Nature Genetics.

[67]  Y. Kido,et al.  Ablation of PDK1 in pancreatic beta cells induces diabetes as a result of loss of beta cell mass. , 2006, Nature genetics.

[68]  Seung K. Kim,et al.  Intrinsic regulators of pancreatic beta-cell proliferation. , 2006, Annual review of cell and developmental biology.

[69]  B. Harfe,et al.  MicroRNAs in vertebrate development. , 2005, Current opinion in genetics & development.

[70]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[71]  N. Rajewsky,et al.  A pancreatic islet-specific microRNA regulates insulin secretion , 2004, Nature.

[72]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[73]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[74]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[75]  L. Bouwens,et al.  Specific and combined effects of insulin and glucose on functional pancreatic beta-cell mass in vivo in adult rats. , 2003, Endocrinology.

[76]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[77]  Terrence S. Furey,et al.  The UCSC Genome Browser Database , 2003, Nucleic Acids Res..

[78]  T. Winter Entgleister Typ-2-Diabetes mellitus – Wie weiter? , 2002 .

[79]  T. Winter [Increased blood sugar in type 2 diabetes mellitus: what now?]. , 2002, Praxis.

[80]  D. Pipeleers,et al.  Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. , 2001, Diabetes.

[81]  C B Wollheim,et al.  Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. , 1992, Endocrinology.