mm-Wave power-combining architectures: Current combining

Abstract The millimeter-wave (mm-Wave) frequency band attracts tremendous research interest due to its wide bandwidth and unique features. Silicon-based processes provide high promise of a realization of wide deployment of mm-Wave systems. Among different circuit components, the silicon power amplifier (PA) is one of the key challenging components due to high power efficiency and high energy efficiency requirements. This is very challenging due to the inherent drawbacks of silicon processes, including low device speed, large losses, low supply, and breakdown voltages, etc. To overcome these issues, power-combining techniques are widely adopted to overcome the power limitation from a single-channel PA. Among different combining techniques, transformer power-combining provides good features such as wide bandwidth and compact size, and therefore is widely adopted. This chapter has makes detailed comparison between current combining and voltage combining of transformer-based structures and leads to the conclusion that current combining is more suitable for the mm-Wave power-combining applications due to two major advantages: higher tolerance to parasitic resistance on the efficiency degradation and better symmetricity. To validate the current-combining techniques, this chapter exemplifies a two-way current-combining-based PA design and achieves then-record performance of the saturated output power Psat of 14.8 dBm, peak PAE of 9.4%.

[1]  V. Dyadyuk,et al.  Integrated W-band GaAs MMIC Modules for Multi-Gigabit Wireless Communication Systems , 2008, 2008 Global Symposium on Millimeter Waves.

[2]  Ali M. Niknejad,et al.  A 60GHz 1V + 12.3dBm Transformer-Coupled Wideband PA in 90nm CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[3]  Maryam Rofougaran,et al.  A fully integrated 22.6dBm mm-Wave PA in 40nm CMOS , 2013, 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[4]  Reza Mahmoudi,et al.  A fully integrated 60GHz distributed transformer power amplifier in bulky CMOS 45nm , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[5]  Anh-Vu Pham,et al.  A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[6]  Ehsan Afshari,et al.  High Power Terahertz and Millimeter-Wave Oscillator Design: A Systematic Approach , 2011, IEEE Journal of Solid-State Circuits.

[7]  Jeffrey S. Walling,et al.  A power-combined switched-capacitor power amplifier in 90nm CMOS , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[8]  M.-C.F. Chang,et al.  60 GHz CMOS Amplifiers Using Transformer-Coupling and Artificial Dielectric Differential Transmission Lines for Compact Design , 2009, IEEE Journal of Solid-State Circuits.

[9]  Patrick Reynaert,et al.  3.4 A dual-mode transformer-based doherty LTE power amplifier in 40nm CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[10]  Naoki Hara,et al.  GaN MMIC amplifiers for W-band transceivers , 2009, 2009 European Microwave Integrated Circuits Conference (EuMIC).

[11]  Ali M. Niknejad,et al.  A compact 1V 18.6dBm 60GHz power amplifier in 65nm CMOS , 2011, 2011 IEEE International Solid-State Circuits Conference.

[12]  Jeng-Han Tsai,et al.  A W-Band Medium Power Amplifier in 90 nm CMOS , 2008, IEEE Microwave and Wireless Components Letters.

[13]  Jeng-Han Tsai,et al.  Design and Analysis of a 55–71-GHz Compact and Broadband Distributed Active Transformer Power Amplifier in 90-nm CMOS Process , 2009, IEEE Transactions on Microwave Theory and Techniques.

[14]  Jeng-Han Tsai,et al.  A multi-mode 60-GHz power amplifier with a novel power combination technique , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[15]  Huei Wang,et al.  A W-band power amplifier in 65-nm CMOS with 27GHz bandwidth and 14.8dBm saturated output power , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[16]  A. Tomkins,et al.  Nanoscale CMOS Transceiver Design in the 90–170-GHz Range , 2009, IEEE Transactions on Microwave Theory and Techniques.

[17]  Gabriel M. Rebeiz,et al.  Spatially power-combined W-band power amplifier using stacked CMOS , 2014, 2014 IEEE Radio Frequency Integrated Circuits Symposium.

[18]  Alberto Valdes-Garcia,et al.  A 1V 17.9dBm 60GHz power amplifier in standard 65nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[19]  Zhiwei Xu,et al.  CMOS Prescaler(s) With Maximum 208-GHz Dividing Speed and 37-GHz Time-Interleaved Dual-Injection Locking Range , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[20]  John R. Long,et al.  A 58–65 GHz Neutralized CMOS Power Amplifier With PAE Above 10% at 1-V Supply , 2010, IEEE Journal of Solid-State Circuits.

[21]  Ali Hajimiri,et al.  Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .

[22]  Gang Liu,et al.  A 5.8 GHz 1 V Linear Power Amplifier Using a Novel On-Chip Transformer Power Combiner in Standard 90 nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[23]  Chorng-Kuang Wang,et al.  A 1V 19.3dBm 79GHz power amplifier in 65nm CMOS , 2012, 2012 IEEE International Solid-State Circuits Conference.

[24]  Baudouin Martineau,et al.  94GHz power-combining power amplifier with +13dBm saturated output power in 65nm CMOS , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[25]  Munkyo Seo,et al.  G-band (140-220 GHz) and W-band (75-110 GHz) InP DHBT medium power amplifiers , 2005, IEEE Transactions on Microwave Theory and Techniques.

[26]  Zhiwei Xu,et al.  A Low Power V-Band CMOS Frequency Divider With Wide Locking Range and Accurate Quadrature Output Phases , 2008, IEEE Journal of Solid-State Circuits.

[27]  John R. Long,et al.  A 60GHz-band 20dBm power amplifier with 20% peak PAE , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[28]  Patrick Reynaert,et al.  14.1 A 0.9V 20.9dBm 22.3%-PAE E-band power amplifier with broadband parallel-series power combiner in 40nm CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[29]  Hao Yu,et al.  A 53-to-73GHz power amplifier with 74.5mW/mm2 output power density by 2D differential power combining in 65nm CMOS , 2013, 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[30]  Lawrence E. Larson,et al.  An integrated 33.5dBm linear 2.4GHz power amplifier in 65nm CMOS for WLAN applications , 2010, IEEE Custom Integrated Circuits Conference 2010.

[31]  Daquan Huang,et al.  A 60GHz CMOS Differential Receiver Front-End Using On-Chip Transformer for 1.2 Volt Operation with Enhanced Gain and Linearity , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..

[32]  Huei Wang,et al.  A 90-GHz power amplifier with 18-dBm output power and 26 GHz 3-dB bandwidth in standard RF 65-nm CMOS technology , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[33]  R. Plana,et al.  Optimized power combining technique to design a 20dB gain, 13.5dBm OCP1 60GHz power amplifier using 65nm CMOS technology , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[34]  R. Holliday,et al.  A lightweight, ultra wideband polarimetric W-band radar with high resolution for environmental applications , 2006, 2006 European Radar Conference.

[35]  Patrick Reynaert,et al.  14.3 A Push-Pull mm-Wave power amplifier with <0.8° AM-PM distortion in 40nm CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[36]  M. Tiebout,et al.  A 76–84 GHz SiGe Power Amplifier Array Employing Low-Loss Four-Way Differential Combining Transformer , 2013, IEEE Transactions on Microwave Theory and Techniques.

[37]  Patrick Reynaert,et al.  A 60-GHz Dual-Mode Class AB Power Amplifier in 40-nm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[38]  Mau-Chung Frank Chang,et al.  Generating terahertz signals in 65nm CMOS with negative-resistance resonator boosting and selective harmonic suppression , 2010, 2010 Symposium on VLSI Circuits.

[39]  Patrick Reynaert,et al.  60GHz power amplifier with distributed active transformer and local feedback , 2010, 2010 Proceedings of ESSCIRC.

[40]  Danny Elad,et al.  A high gain wideband 77GHz SiGe power amplifier , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[41]  Songcheol Hong,et al.  A 77-GHz CMOS Power Amplifier With a Parallel Power Combiner Based on Transmission-Line Transformer , 2013, IEEE Transactions on Microwave Theory and Techniques.

[42]  Didier Belot,et al.  A 53-to-68GHz 18dBm power amplifier with an 8-way combiner in standard 65nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[43]  U.R. Pfeiffer,et al.  A 23-dBm 60-GHz Distributed Active Transformer in a Silicon Process Technology , 2007, IEEE Transactions on Microwave Theory and Techniques.

[44]  Ali M. Niknejad,et al.  Current combining 60GHz CMOS power amplifiers , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.