Mathematik in den Naturwissenschaften Leipzig Domain walls and vortices in thin ferromagnetic films

[1]  R. Moser Ginzburg-Landau vortices for thin ferromagnetic films , 2003 .

[2]  Frédéric Hélein,et al.  Asymptotics for the minimization of a Ginzburg-Landau functional , 1993 .

[3]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[4]  G. Carbou THIN LAYERS IN MICROMAGNETISM , 2001 .

[5]  Robert V. Kohn,et al.  Effective dynamics for ferromagnetic thin films: a rigorous justification , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Halil Mete Soner,et al.  Dynamics of Ginzburg‐Landau Vortices , 1998 .

[7]  Antonio DeSimone,et al.  2-d stability of the Néel wall , 2006 .

[8]  X. Cabré,et al.  Layer solutions in a half‐space for boundary reactions , 2005 .

[9]  Robert V. Kohn,et al.  A reduced theory for thin‐film micromagnetics , 2002 .

[10]  Richard D. James,et al.  Micromagnetics of very thin films , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[12]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[13]  Sylvia Serfaty,et al.  A product-estimate for Ginzburg–Landau and corollaries , 2004 .

[14]  G. Bouchitte,et al.  Un resultat de perturbations singulieres avec la norme H 1/2 , 1994 .

[15]  Roger Moser,et al.  Moving boundary vortices for a thin‐film limit in micromagnetics , 2005 .

[16]  Robert V. Kohn,et al.  Repulsive Interaction of Néel Walls, and the Internal Length Scale of the Cross-Tie Wall , 2003, Multiscale Model. Simul..

[17]  W. Döring,et al.  Über die Trägheit der Wände zwischen Weißschen Bezirken , 1948 .

[18]  Fanghua Lin,et al.  Some Dynamical Properties of Ginzburg-Landau Vortices , 1996 .

[19]  J. Toland,et al.  The Peierls–Nabarro and Benjamin–Ono Equations , 1997 .

[20]  Robert V. Kohn,et al.  Recent analytical developments in micromagnetics , 2004 .

[21]  R. Kohn,et al.  Another Thin-Film Limit of Micromagnetics , 2005 .

[22]  H. Riedel,et al.  Micromagnetic Treatment of Néel Walls , 1971 .

[23]  G. Bouchitté,et al.  Phase Transition with the Line‐Tension Effect , 1998 .

[24]  Christof Melcher Domain wall motion in ferromagnetic layers , 2004 .

[25]  F. Lin A remark on the previous paper “Some dynamical properties of Ginzburg-Landau vortices” , 1996 .

[26]  P. Bates,et al.  Traveling Waves in a Convolution Model for Phase Transitions , 1997 .

[27]  S. D. Chatterji Proceedings of the International Congress of Mathematicians , 1995 .

[28]  A nonlocal singular perturbation problem with periodic well potential , 2006 .

[29]  Matthias Kurzke,et al.  The gradient flow motion of boundary vortices , 2007 .

[30]  Matthias Kurzke,et al.  Mathematik in den Naturwissenschaften Leipzig Boundary vortices in thin magnetic films by , 2004 .

[31]  Christof Melcher,et al.  Logarithmic lower bounds for Néel walls , 2004 .

[32]  E Weinan,et al.  Effective dynamics for ferromagnetic thin films , 2001 .

[33]  J. Dillon 9 – Domains and Domain Walls , 1963 .

[34]  A. N. Bogdanov,et al.  Magnetic Domains. The Analysis of Magnetic Microstructures , 1999 .

[35]  Christof Melcher,et al.  The Logarithmic Tail of Néel Walls , 2003 .

[36]  Michael Struwe,et al.  On the asymptotic behavior of minimizers of the Ginzburg-Landau model in $2$ dimensions , 1994, Differential and Integral Equations.

[37]  An Off-DiagonalT1 Theorem and Applications , 1998 .

[38]  Robert V. Kohn,et al.  Magnetic microstructures - a paradigm of multiscale problems , 1999 .

[39]  Roger Moser,et al.  Boundary Vortices for Thin Ferromagnetic Films , 2004 .

[40]  Felix Otto Cross-over in Scaling Laws: A Simple Example from Micromagnetics , 2002 .

[41]  S. Serfaty,et al.  Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau , 2004 .