Mathematik in den Naturwissenschaften Leipzig Domain walls and vortices in thin ferromagnetic films
暂无分享,去创建一个
[1] R. Moser. Ginzburg-Landau vortices for thin ferromagnetic films , 2003 .
[2] Frédéric Hélein,et al. Asymptotics for the minimization of a Ginzburg-Landau functional , 1993 .
[3] Lev Davidovich Landau,et al. ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .
[4] G. Carbou. THIN LAYERS IN MICROMAGNETISM , 2001 .
[5] Robert V. Kohn,et al. Effective dynamics for ferromagnetic thin films: a rigorous justification , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[6] Halil Mete Soner,et al. Dynamics of Ginzburg‐Landau Vortices , 1998 .
[7] Antonio DeSimone,et al. 2-d stability of the Néel wall , 2006 .
[8] X. Cabré,et al. Layer solutions in a half‐space for boundary reactions , 2005 .
[9] Robert V. Kohn,et al. A reduced theory for thin‐film micromagnetics , 2002 .
[10] Richard D. James,et al. Micromagnetics of very thin films , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[11] H. Brezis,et al. Ginzburg-Landau Vortices , 1994 .
[12] Tosio Kato,et al. Commutator estimates and the euler and navier‐stokes equations , 1988 .
[13] Sylvia Serfaty,et al. A product-estimate for Ginzburg–Landau and corollaries , 2004 .
[14] G. Bouchitte,et al. Un resultat de perturbations singulieres avec la norme H 1/2 , 1994 .
[15] Roger Moser,et al. Moving boundary vortices for a thin‐film limit in micromagnetics , 2005 .
[16] Robert V. Kohn,et al. Repulsive Interaction of Néel Walls, and the Internal Length Scale of the Cross-Tie Wall , 2003, Multiscale Model. Simul..
[17] W. Döring,et al. Über die Trägheit der Wände zwischen Weißschen Bezirken , 1948 .
[18] Fanghua Lin,et al. Some Dynamical Properties of Ginzburg-Landau Vortices , 1996 .
[19] J. Toland,et al. The Peierls–Nabarro and Benjamin–Ono Equations , 1997 .
[20] Robert V. Kohn,et al. Recent analytical developments in micromagnetics , 2004 .
[21] R. Kohn,et al. Another Thin-Film Limit of Micromagnetics , 2005 .
[22] H. Riedel,et al. Micromagnetic Treatment of Néel Walls , 1971 .
[23] G. Bouchitté,et al. Phase Transition with the Line‐Tension Effect , 1998 .
[24] Christof Melcher. Domain wall motion in ferromagnetic layers , 2004 .
[25] F. Lin. A remark on the previous paper “Some dynamical properties of Ginzburg-Landau vortices” , 1996 .
[26] P. Bates,et al. Traveling Waves in a Convolution Model for Phase Transitions , 1997 .
[27] S. D. Chatterji. Proceedings of the International Congress of Mathematicians , 1995 .
[28] A nonlocal singular perturbation problem with periodic well potential , 2006 .
[29] Matthias Kurzke,et al. The gradient flow motion of boundary vortices , 2007 .
[30] Matthias Kurzke,et al. Mathematik in den Naturwissenschaften Leipzig Boundary vortices in thin magnetic films by , 2004 .
[31] Christof Melcher,et al. Logarithmic lower bounds for Néel walls , 2004 .
[32] E Weinan,et al. Effective dynamics for ferromagnetic thin films , 2001 .
[33] J. Dillon. 9 – Domains and Domain Walls , 1963 .
[34] A. N. Bogdanov,et al. Magnetic Domains. The Analysis of Magnetic Microstructures , 1999 .
[35] Christof Melcher,et al. The Logarithmic Tail of Néel Walls , 2003 .
[36] Michael Struwe,et al. On the asymptotic behavior of minimizers of the Ginzburg-Landau model in $2$ dimensions , 1994, Differential and Integral Equations.
[37] An Off-DiagonalT1 Theorem and Applications , 1998 .
[38] Robert V. Kohn,et al. Magnetic microstructures - a paradigm of multiscale problems , 1999 .
[39] Roger Moser,et al. Boundary Vortices for Thin Ferromagnetic Films , 2004 .
[40] Felix Otto. Cross-over in Scaling Laws: A Simple Example from Micromagnetics , 2002 .
[41] S. Serfaty,et al. Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau , 2004 .