Machine learning aplicado a remote sensing: aplicaciones en gobernanza digital para el desarrollo sustentable

[1]  Juan Frausto-Solís,et al.  Predictive ability of machine learning methods for massive crop yield prediction , 2014 .

[2]  Gang Chen,et al.  Identification of Forested Landslides Using LiDar Data, Object-based Image Analysis, and Machine Learning Algorithms , 2015, Remote. Sens..

[3]  Stefano Ermon,et al.  Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping , 2015, AAAI.

[4]  Su Li,et al.  Survey of Support Vector Machine in the Processing of Remote Sensing Image , 2013 .

[5]  Minerva Singh,et al.  Mapping Above-Ground Biomass in a Tropical Forest in Cambodia Using Canopy Textures Derived from Google Earth , 2015, Remote. Sens..

[6]  S. Veenadhari,et al.  Machine learning approach for forecasting crop yield based on climatic parameters , 2014, 2014 International Conference on Computer Communication and Informatics.

[7]  Haohuan Fu,et al.  Exploring the potential role of feature selection in global land-cover mapping , 2016 .

[8]  G. Shaw,et al.  Signal processing for hyperspectral image exploitation , 2002, IEEE Signal Process. Mag..

[9]  Claudia Cecilia Russo,et al.  Tratamiento masivo de datos utilizando técnicas de machine learning , 2016 .

[10]  Tomasz Janowski,et al.  Digital government evolution: From transformation to contextualization , 2015, Gov. Inf. Q..

[11]  Amir Hossein Alavi,et al.  Machine learning in geosciences and remote sensing , 2016 .

[12]  Nicolas David,et al.  Large-scale classification of water areas using airborne topographic lidar data , 2013 .

[13]  J. Maynard,et al.  Hyper-temporal remote sensing for digital soil mapping: Characterizing soil-vegetation response to climatic variability , 2017 .

[14]  Kristofer D. Johnson,et al.  Distribution of near-surface permafrost in Alaska: Estimates of present and future conditions , 2015 .

[15]  David Beamish,et al.  A machine learning approach to geochemical mapping , 2016 .

[16]  Lei Tian,et al.  Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform , 2016 .

[17]  Tomasz Janowski,et al.  Electronic governance for sustainable development: how EGOV solutions contribute to SD goals? , 2013, DG.O.

[18]  D. Tilman,et al.  Global food demand and the sustainable intensification of agriculture , 2011, Proceedings of the National Academy of Sciences.

[19]  Gustavo Camps-Valls,et al.  Machine learning in remote sensing data processing , 2009, 2009 IEEE International Workshop on Machine Learning for Signal Processing.

[20]  Alessandro Montaghi,et al.  A performance comparison of machine learning methods to estimate the fast-growing forest plantation yield based on laser scanning metrics , 2015, Comput. Electron. Agric..

[21]  Yonghui Wang,et al.  Agriculture robot and applications , 2015 .

[22]  Viacheslav I. Adamchuk,et al.  A global spectral library to characterize the world’s soil , 2016 .

[23]  Gustavo Camps-Valls,et al.  Recent advances in remote sensing image processing , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[24]  Sang Michael Xie,et al.  Combining satellite imagery and machine learning to predict poverty , 2016, Science.

[25]  Birgit Kleinschmit,et al.  Combining machine learning and ontological data handling for multi-source classification of nature conservation areas , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[26]  Jin Zhang,et al.  An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping , 2016 .

[27]  Savvas Dimitriadis,et al.  Applying Machine Learning to Extract New Knowledge in Precision Agriculture Applications , 2008, 2008 Panhellenic Conference on Informatics.