Neuro-Wavelet Classifier for Multispectral Remote Sensing Images

A neuro-wavelet supervised classifier is proposed for land cover classification of multispectral remote sensing images. Features extracted from the original pixels information using wavelet transform (WT) are fed as input to a feed forward multi-layer neural network (MLP). The WT basically provides the spatial and spectral features of a pixel along with its neighbors and these features are used for improved classification. For testing the performance of the proposed method, we have used two IRS-1A satellite images and one SPOT satellite image. Results are compared with those of the original spectral feature based classifiers and found to be consistently better. Simulation study revealed that Biorthogonal 3.3 (Bior3.3) wavelet in combination with MLP performed better compared to all other wavelets. Results are evaluated visually and quantitatively with two measurements, β index of homogeneity and Davies–Bouldin (DB) index for compactness and separability of classes. We suggested a modified β index in accessing the percentage of accuracy (PAβ) of the classified images also.

[1]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[2]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  P. D. Heermann,et al.  Classification of multispectral remote sensing data using a back-propagation neural network , 1992, IEEE Trans. Geosci. Remote. Sens..

[4]  Mark J. T. Smith,et al.  A new motion parameter estimation algorithm based on the continuous wavelet transform , 2000, IEEE Trans. Image Process..

[5]  Mausumi Acharyya,et al.  Segmentation of remotely sensed images using wavelet features and their evaluation in soft computing framework , 2003, IEEE Trans. Geosci. Remote. Sens..

[6]  S. Pal,et al.  Segmentation of remotely sensed images with fuzzy thresholding, and quantitative evaluation , 2000 .

[7]  Saroj K. Meher,et al.  Neuro-Wavelet Classifier for Remote Sensing Image Classification , 2007, 2007 International Conference on Computing: Theory and Applications (ICCTA'07).

[8]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[9]  F. S. Cohen,et al.  Classification of Rotated and Scaled Textured Images Using Gaussian Markov Random Field Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Doug King,et al.  Sugar maple decline assessment based on spectral and textural analysis of multispectral aerial videography , 1991 .

[11]  P. Mather,et al.  Classification Methods for Remotely Sensed Data , 2001 .

[12]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[13]  Mario Chica-Olmo,et al.  Computing geostatistical image texture for remotely sensed data classification , 2000 .

[14]  Michael W. Marcellin,et al.  JPEG2000 - image compression fundamentals, standards and practice , 2002, The Kluwer International Series in Engineering and Computer Science.

[15]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[16]  S. Mallat A wavelet tour of signal processing , 1998 .

[17]  C. Özkan,et al.  Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities , 2004 .

[18]  Horst Bischof,et al.  Multispectral classification of Landsat-images using neural networks , 1992, IEEE Trans. Geosci. Remote. Sens..

[19]  Rama Chellappa,et al.  Classification of textures using Gaussian Markov random fields , 1985, IEEE Trans. Acoust. Speech Signal Process..

[20]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[21]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[22]  G. Strang,et al.  THE APPLICATION OF MULTIWAVELET FILTER BANKS TO IMAGE PROCESSING ∗ , 1995 .

[23]  Arivazhagan Selvaraj,et al.  Texture classification using wavelet transform , 2003, Pattern Recognit. Lett..

[24]  Sankar K. Pal,et al.  Segmentation of multispectral remote sensing images using active support vector machines , 2004, Pattern Recognit. Lett..

[25]  Paul Scheunders,et al.  Statistical texture characterization from discrete wavelet representations , 1999, IEEE Trans. Image Process..

[26]  Geoffrey E. Hinton,et al.  Learning representations by back-propagation errors, nature , 1986 .

[27]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Casimer M. DeCusatis,et al.  Wavelets and Subbands: Fundamentals and Applications , 2002 .

[29]  S. Mallat II – Fourier kingdom , 1999 .

[30]  Peter N. Heller,et al.  The application of multiwavelet filterbanks to image processing , 1999, IEEE Trans. Image Process..

[31]  P. Topiwala Wavelet Image and Video Compression , 1998 .

[32]  Saroj K. Meher,et al.  Multispectral Remote Sensing Image Classification Using Wavelet Based Features , 2007 .

[33]  Paul M. Mather,et al.  The use of backpropagating artificial neural networks in land cover classification , 2003 .

[34]  Sakari Tuominen,et al.  Performance of different spectral and textural aerial photograph features in multi-source forest inventory , 2005 .

[35]  Hiroshi Motoda,et al.  Feature Extraction, Construction and Selection , 1998 .

[36]  Claudio Iemmi,et al.  Multiple feature extraction by using simultaneous wavelet transforms , 2003 .

[37]  Kurt Hornik,et al.  Learning in linear neural networks: a survey , 1995, IEEE Trans. Neural Networks.

[38]  Saroj K. Meher,et al.  Remote Sensing Image Classification: A Wavelet-Neuro-Fuzzy Approach , 2006 .

[39]  B. Alpert Wavelets and other bases for fast numerical linear algebra , 1993 .

[40]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Jun Yu,et al.  Multispectral image classification using wavelets: a simulation study , 2003, Pattern Recognit..

[42]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[43]  Giovanni Soda,et al.  Artificial neural networks for document analysis and recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  C.-C. Jay Kuo,et al.  Texture analysis and classification with tree-structured wavelet transform , 1993, IEEE Trans. Image Process..

[45]  Alexandre Jouan,et al.  Land use mapping with evidential fusion of features extracted from polarimetric synthetic aperture radar and hyperspectral imagery , 2004, Inf. Fusion.

[46]  Patrice Y. Simard,et al.  Estimation of the self-similarity parameter using the wavelet transform , 2004, Signal Process..

[47]  Hamid Soltanian-Zadeh,et al.  Comparison of multiwavelet, wavelet, Haralick, and shape features for microcalcification classification in mammograms , 2004, Pattern Recognit..

[48]  Guoqiang Peter Zhang,et al.  Neural networks for classification: a survey , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[49]  Hiroshi Motoda,et al.  Feature Extraction, Construction and Selection: A Data Mining Perspective , 1998 .

[50]  Robert M. Haralick,et al.  Combined spectral and spatial processing of ERTS imagery data , 1974 .

[51]  M. Unser Local linear transforms for texture measurements , 1986 .

[52]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[53]  P. Swain,et al.  Neural Network Approaches Versus Statistical Methods In Classification Of Multisource Remote Sensing Data , 1990 .

[54]  Michael Unser,et al.  Multiresolution Feature Extraction and Selection for Texture Segmentation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Harold H. Szu,et al.  Integration of local texture information in the automatic classification of Landsat images , 1997, Defense, Security, and Sensing.