Characterisation of Reference Materials for In Situ Rb‐Sr Dating by LA‐ICP‐MS/MS

We present Rb and Sr mass fraction and 87Sr/86Sr isotope ratio measurement results for four reference materials (RMs) obtained from the Service d'Analyse des Roches et des Minéraux (SARM), Nancy, France: Mica‐Mg, Mica‐Fe, GL‐O and FK‐N. These four RMs have different chemical compositions spanning the range of those of most K‐bearing feldspars and micas, making them potential calibration materials for in situ Rb‐Sr dating of natural minerals by LA‐ICP‐MS/MS. Selected grains and flakes from the four RMs present variable degrees of heterogeneity observable by SEM‐EDS and EPMA imaging, and chemical mapping. This heterogeneity is mainly related to inclusions of minerals within flakes and grains and to chemical substitutions linked to crystallographic control and alteration processes. The Mica‐Mg RM is the least affected. The powders available at the SARM were analysed by ID‐TIMS (87Sr/86Sr and Sr) and ID‐MC‐ICP‐MS (Rb) after digestion and separation. The mean 87Rb/86Sr ratios are 155.6 ± 4.7% (2s, as for other RMs) for Mica‐Mg, 1815 ± 14% for Mica‐Fe, 36.2 ± 11% for GL‐O and 69.9 ± 5.9% for FK‐N. The mean 87Sr/86Sr ratios are 1.8622 ± 0.36% (2s, as for other RMs) for Mica‐Mg, 7.99 ± 13% for Mica‐Fe, 0.75305 ± 0.12% for GL‐O, and 1.2114 ± 0.17% for FK‐N. The four RMs each show dispersion in 87Sr/86Sr and Rb and Sr mass fractions, to degrees that differ between RMs and that reflect the heterogeneity of their original crystals. The most heterogeneous RMs are GL‐O and Mica‐Fe. The calculated mean Rb‐Sr isotopic ages are 521 ± 24 Ma for Mica‐Mg, 287 ± 55 Ma for Mica‐Fe, 89.2 ± 9.9 Ma for GL‐O and 512 ± 30 Ma for FK‐N. The proposed age for Mica‐Fe may be unreliable due to the elevated dispersion of individual analysis linked to the highly radiogenic composition of the biotite and to the presence of numerous mineral inclusions. We recommend use of these proposed working values of 87Sr/86Sr and 87Rb/86Sr ratios and associated uncertainties when using the four RMs for in situ Rb‐Sr dating by LA‐ICP‐MS/MS. The availability of these four well‐characterised RMs will allow progress in the development and application of the Rb‐Sr dating approach by LA‐ICP‐MS/MS.

[1]  L. Coogan,et al.  A high throughput Rb-Sr dating method using solution tandem ICP-MS/MS (87Sr/86Sr) and standard addition calibration ICP-MS (Rb/Sr) , 2021, MethodsX.

[2]  T. Zack,et al.  LA‐ICP‐MS/MS Single‐Spot Rb‐Sr Dating , 2021, Goldschmidt2021 abstracts.

[3]  D. Garbe‐Schönberg,et al.  Assessment of elemental fractionation and matrix effects during in situ Rb–Sr dating of phlogopite by LA-ICP-MS/MS: implications for the accuracy and precision of mineral ages , 2020 .

[4]  O. Alard,et al.  Optimisation of laser and mass spectrometer parameters for the in situ analysis of Rb/Sr ratios by LA-ICP-MS/MS , 2020 .

[5]  W. Amelung,et al.  Mineral Nutrients Sourced in Deep Regolith Sustain Long‐Term Nutrition of Mountainous Temperate Forest Ecosystems , 2020, Global Biogeochemical Cycles.

[6]  S. Kim,et al.  Coupled U-Pb and Rb-Sr laser ablation geochronology trace Archean to Proterozoic crustal evolution in the Dharwar Craton, India , 2020 .

[7]  Xiaoming Liu,et al.  87 Sr/ 86 Sr isotope ratios in rocks determined using inductively coupled plasma tandem mass spectrometry in O 2 mode without prior Sr purification , 2020 .

[8]  M. Cathelineau,et al.  Reappraisal of the GL‐O Reference Material for K‐Ar Dating: New Insight from Microanalysis, Single‐Grain and Milligram Ar Measurements , 2020, Geostandards and Geoanalytical Research.

[9]  M. Whitehouse,et al.  In situ Rb-Sr dating of slickenfibres in deep crystalline basement faults , 2020, Scientific Reports.

[10]  C. Kirkland,et al.  Resolving multiple geological events using in situ Rb-Sr geochronology: implications for metallogenesis at Tropicana, Western Australia , 2020 .

[11]  M. Pichavant,et al.  Mica-liquid trace elements partitioning and the granite-pegmatite connection: The St-Sylvestre complex (Western French Massif Central) , 2019, Chemical Geology.

[12]  T. Zack,et al.  In situ Rb-Sr dating of K-bearing minerals from the orogenic Akçaabat gold deposit in the Menderes Massif, Western Anatolia, Turkey , 2019, Journal of Asian Earth Sciences.

[13]  P. Vermeesch IsoplotR: A free and open toolbox for geochronology , 2018, Geoscience Frontiers.

[14]  D. Garbe‐Schönberg,et al.  In situ Rb–Sr and K–Ca dating by LA-ICP-MS/MS: an evaluation of N2O and SF6 as reaction gases , 2017 .

[15]  T. Zack,et al.  In Situ Rb-Sr Dating of Fine-grained Vein Mineralizations Using LA-ICP-MS , 2017 .

[16]  T. Zack,et al.  Laser ablation Rb/Sr dating by online chemical separation of Rb and Sr in an oxygen-filled reaction cell , 2016 .

[17]  J. Goodier Encyclopedia of Scientific Dating Methods , 2016 .

[18]  F. Vanhaecke,et al.  Laser ablation-tandem ICP-mass spectrometry (LA-ICP-MS/MS) for direct Sr isotopic analysis of solid samples with high Rb/Sr ratios , 2016 .

[19]  W. Hang,et al.  Elemental fractionation and matrix effects in laser sampling based spectrometry , 2016 .

[20]  F. Vanhaecke,et al.  Tandem ICP-mass spectrometry for Sr isotopic analysis without prior Rb/Sr separation , 2016 .

[21]  P. Bievre,et al.  IUPAC-IUGS recommendation on the half life of 87Rb , 2015 .

[22]  R. Schuster,et al.  Rb/Sr isotopic and compositional retentivity of muscovite during deformation , 2015, Lithos.

[23]  G. Stevens,et al.  Extreme mineral-scale Sr isotope heterogeneity in granites by disequilibrium melting of the crust , 2014 .

[24]  Robert F. Martin,et al.  Ampandrandava and similar phlogopite deposits in southern Madagascar: Derivation from a silicocarbonatitic melt of crustal origin , 2014 .

[25]  Ming Li,et al.  Applications of LA-ICP-MS in the elemental analyses of geological samples , 2013, Chinese Science Bulletin.

[26]  H. Gilg,et al.  Geochemistry of phlogopite, diopside, calcite, anhydrite and apatite pegmatites and syenites of southern Madagascar: evidence for crustal silicocarbonatitic (CSC) melt formation in a Panafrican collisional tectonic setting , 2013, International Journal of Earth Sciences.

[27]  C. Chauvel,et al.  Comprehensive Chemical and Isotopic Analyses of Basalt and Sediment Reference Materials , 2011 .

[28]  I. Mcdougall,et al.  Calibration of GA1550 biotite standard for K/Ar and 40Ar/39Ar dating , 2011 .

[29]  B. Fernández,et al.  Elemental fractionation effects in high repetition rate IR femtosecond laser ablation ICP-MS analysis of glasses , 2009 .

[30]  G. Koyanagi,et al.  On the chemical resolution of the 87Rb+ (s0)/87Sr+ (s1) isobaric interference: a kinetic search for an optimum reagent. , 2008, Analytica chimica acta.

[31]  Fei Wang,et al.  Single grain Rb-Sr isotopic analysis of GA-1550 biotite, LP-6 biotite and Bern-4M muscovite 40Ar-39Ar dating standards , 2008 .

[32]  H. Austrheim,et al.  Diffusion versus recrystallization processes in Rb-Sr geochronology : Isotopic relics in eclogite facies rocks, Western Gneiss Region, Norway , 2008 .

[33]  S. Jackson Calibration strategies for elemental analysis by LA-ICP-MS , 2008 .

[34]  K. Mezger,et al.  Reassessment of the NBS SRM-607 K-feldspar as a high precision Rb/Sr and Sr isotope reference , 2006 .

[35]  Qiu-li Li,et al.  Ultra-low procedural blank and the single-grain mica Rb-Sr isochron dating , 2005 .

[36]  M. Elburg,et al.  Sr and Pb isotopic composition of five USGS glasses (BHVO-2G, BIR-1G, BCR-2G, TB-1G, NKT-1G) , 2005 .

[37]  K. Mezger,et al.  High precision determinations of 87Rb/85Rb in geologic materials by MC-ICP-MS , 2005 .

[38]  T. Spell,et al.  Characterization and calibration of 40Ar/39Ar dating standards , 2003 .

[39]  D. Günther,et al.  The nature and sources of laser induced isotopic fractionation in laser ablation-multicollector-inductively coupled plasma-mass spectrometry , 2003 .

[40]  I. Rodushkin,et al.  Analyte- and matrix-dependent elemental response variations in laser ablation inductively coupled plasma mass spectrometry , 2002 .

[41]  B. Willigers,et al.  Rb isotope dilution analyses by MC-ICPMS using Zr to correct for mass fractionation: towards improved Rb–Sr geochronology? , 2002 .

[42]  H. Austrheim,et al.  Precise eclogitization ages deduced from Rb/Sr mineral systematics: The Maksyutov complex , 2002 .

[43]  M. Axelsson,et al.  Analyte- and matrix-dependent elemental response variations in laser ablation inductively coupled plasma mass spectrometry : Part 1. The roles of plasma and ion sampling conditions , 2002 .

[44]  J. Woodhead,et al.  Strontium, Neodymium and Lead Isotope Analyses of NIST Glass Certified Reference Materials: SRM 610, 612, 614 , 2001 .

[45]  J. Carignan,et al.  Routine Analyses of Trace Elements in Geological Samples using Flow Injection and Low Pressure On-Line Liquid Chromatography Coupled to ICP-MS: A Study of Geochemical Reference Materials BR, DR-N, UB-N, AN-G and GH , 2001 .

[46]  S. Tanner,et al.  Elimination of isobaric interferences in ICP-MS, using ion–molecule reaction chemistry: Rb/Sr age determination of magmatic rocks, a case study , 2001 .

[47]  R. D. Raju,et al.  Petrogenetic Model of A-Type Granitoids of the Kullampatti Area, Salem District, Tamil Nadu, India , 1999 .

[48]  F. Vanhaecke,et al.  The determination of strontium isotope ratios by means of quadrupole-based ICP-mass spectrometry: a geochronological case study , 1999 .

[49]  Odin,et al.  Single-grain 40Ar-39Ar ages of glauconies: implications for the geologic time scale and global sea level variations , 1998, Science.

[50]  K. Rosman,et al.  Sequential closure of K–Ca and Rb–Sr isotopic systems in Archaean micas , 1997 .

[51]  R. Butler,et al.  Dating deformation using Rb‐Sr in white mica: Greenschist facies deformation ages from the Entrelor shear zone, Italian Alps , 1997 .

[52]  S. Scaillet,et al.  Cooling pattern and mineralization history of the Saint Sylvestre and western Marche leucogranite pluton, French Massif Central: I. 40Ar/39Ar isotopic constraints , 1996 .

[53]  D. DePaolo,et al.  RbSr microchrons in the Manaslu granite: implications for Himalayan thermochronology , 1996 .

[54]  P. Jaeckel,et al.  Zircon geochronology of anatectic melts and residues from a highgrade pelitic assemblage at Ihosy, southern Madagascar: evidence for Pan-African granulite metamorphism , 1996, Geological Magazine.

[55]  K. Govindaraju 1995 WORKING VALUES WITH CONFIDENCE LIMITS FOR TWENTY-SIX CRPG, ANRT AND IWG-GIT GEOSTANDARDS , 1995 .

[56]  J. Leroy,et al.  Isotopic systematics (O, H, C, Sr, Nd) of superimposed barren and U-bearing hydrothermal systems in a Hercynian granite, Massif Central, France , 1990 .

[57]  A. Bourguignon,et al.  Metallogenesis in the French part of the Variscan orogen. Part I: U preconcentrations in pre-Variscan and Variscan formations — a comparison with Sn, W and Au , 1990 .

[58]  J. Anderson The Nature and origin of Cordilleran magmatism , 1990 .

[59]  K. Govindaraju Report (1973–1984) on Two ANRT Geochemical Reference Samples: Granite GS-N and Potash Feldspar FK-N , 1984 .

[60]  K. Govindaraju Report (1968–1978) on Two Mica Reference Samples: Biotite Mica-Fe and Phlogopite Mica-Mg , 1979 .

[61]  I. Mcdougall,et al.  Total fusion 40Ar/39Ar ages using Hifar reactor , 1974 .

[62]  八木 伸二郎 比良花崗岩類のRb-Sr dating , 1970 .

[63]  R. Armstrong,et al.  A comparison of K-Ar and Rb-Sr ages on Alpine biotites , 1966 .