A multiscale creep model as basis for simulation of early-age concrete behavior

A previously published multiscale model for early-age cement-based materials [Pichler, et al.2007. "A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials." Engineering Fracture Mechanics, 74, 34-58] is extended towards upscaling of viscoelastic properties. The obtained model links macroscopic behavior, i.e., creep compliance of concrete samples, to the composition of concrete at finer scales and the (supposedly) intrinsic material properties of distinct phases at these scales. Whereas finer-scale composition (and its history) is accessible through recently developed hydration models for the main clinker phases in ordinary Portland cement (OPC), viscous properties of the creep active constituent at finer scales, i.e., calcium-silicate-hydrates (CSH) are identified from macroscopic creep tests using the proposed multiscale model. The proposed multiscale model is assessed by different concrete creep tests reported in the open literature. Moreover, the model prediction is compared to a commonly used macroscopic creep model, the so-called B3 model.

[1]  A. Zaoui,et al.  Structural morphology and relaxation spectra of viscoelastic heterogeneous materials , 2000 .

[2]  Miguel Cervera,et al.  THERMO-CHEMO-MECHANICAL MODEL FOR CONCRETE. II: DAMAGE AND CREEP , 1999 .

[3]  D. Bentz Three-Dimensional Computer Simulation of Portland Cement Hydration and Microstructure Development , 1997 .

[4]  K. van Breugel,et al.  NUMERICAL MODELLING OF AUTOGENOUS SHRINKAGE OF HARDENING CEMENT PASTE , 1997 .

[5]  Hamlin M. Jennings,et al.  A model for the microstructure of calcium silicate hydrate in cement paste , 2000 .

[6]  J. Jehng,et al.  Pore structure of hydrating cement paste by magnetic resonance relaxation analysis and freezing. , 1996, Magnetic resonance imaging.

[7]  Pierre Suquet,et al.  Continuum Micromechanics , 1997, Encyclopedia of Continuum Mechanics.

[8]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[9]  Christian Hellmich,et al.  Modeling of Early-Age Creep of Shotcrete. I: Model and Model Parameters , 2000 .

[10]  Roman Lackner,et al.  A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials , 2007 .

[11]  Olivier Coussy,et al.  Modeling of Thermochemomechanical Couplings of Concrete at Early Ages , 1995 .

[12]  Roman Lackner,et al.  Failure modes and effective strength of two-phase materials determined by means of numerical limit analysis , 2008 .

[13]  Zdeněk P. Bažant,et al.  Mathematical modeling of creep and shrinkage of concrete , 1988 .

[14]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  B. Bary,et al.  Influence of inclusion shapes on the effective linear elastic properties of hardened cement pastes , 2006 .

[16]  Bernhard A. Schrefler,et al.  Hygro‐thermo‐chemo‐mechanical modelling of concrete at early ages and beyond. Part II: shrinkage and creep of concrete , 2006 .

[17]  S. Snyder,et al.  Creep and Damage in Concrete , 2022 .

[18]  Zdenek P. Bazant Thermodynamics of Solidifying or Melting Viscoelastic Material , 1979 .

[19]  H. Jennings,et al.  The use of digital images to determine deformation throughout a microstructure Part II Application to cement paste , 2000 .

[20]  A. Ehrlacher,et al.  Analyses and models of the autogenous shrinkage of hardening cement paste: I. Modelling at macroscopic scale , 1995 .

[21]  Franz-Josef Ulm,et al.  A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials , 2003 .

[22]  H. Jennings Colloid model of C−S−H and implications to the problem of creep and shrinkage , 2004 .

[23]  Mark E. Leeman,et al.  Pore Size Distributions in Hardened Cement Paste by Sem Image Analysis , 1994 .

[24]  Z. Bažant,et al.  Creep and shrinkage prediction model for analysis and design of concrete structures-model B3 , 1995 .

[25]  En-Jui Lee,et al.  Stress analysis in visco-elastic bodies , 1955 .

[26]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[27]  Jeffrey J. Thomas,et al.  A colloidal interpretation of chemical aging of the C-S-H gel and its effects on the properties of cement paste , 2006 .

[28]  Bernard Schrefler,et al.  Modelling creep and shrinkage of concrete by means of effective stresses , 2007 .

[29]  Franz-Josef Ulm,et al.  Microprestress-Solidification Theory for Concrete Creep. I: Aging and Drying Effects , 1997 .

[30]  Gianluca Cusatis,et al.  Two-scale Study of Concrete Fracturing Behavior , 2007 .

[31]  H. Jennings,et al.  A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes , 2000 .

[32]  Roman Lackner,et al.  Identification of Logarithmic‐Type Creep of Calcium‐Silicate‐Hydrates by Means of Nanoindentation , 2009 .

[33]  Roman Lackner,et al.  Scaling relations for viscoelastic – cohesive conical indentation , 2008 .

[34]  Gilles Chanvillard,et al.  Modelling Elasticity of a Hydrating Cement Paste , 2007 .

[35]  Kenneth C. Hover,et al.  Mercury porosimetry of hardened cement pastes , 1999 .

[36]  F Ulm Couplages thermochemomecaniques dans les betons. Un premier bilan , 1999 .

[37]  S. Diamond The microstructure of cement paste and concrete - a visual primer , 2004 .

[38]  N. Laws,et al.  Self-consistent estimates for the viscoelastic creep compliances of composite materials , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  F. Nabarro Creep Mechanisms in Crystalline Solids , 2001 .

[40]  C. Boulay,et al.  Creep and shrinkage coupling : New review of some evidence , 1999 .

[41]  Frédéric Grondin,et al.  Multi-scales Modelling for the Behaviour of Damaged Concrete , 2007 .

[42]  Franz-Josef Ulm,et al.  Creep and shrinkage of concrete: physical origins and practical measurements , 2001 .

[43]  Olivier Coussy,et al.  Strength growth as chemo-plastic hardening in early age concrete , 1996 .

[44]  P Laplante PROPRIETES MECANIQUES DES BETONS DURCISSANTS : ANALYSE COMPAREE DES BETONS CLASSIQUES ET A TRES HAUTES PERFORMANCES , 1993 .

[45]  K. Breugel,et al.  Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms , 2003 .