Assessing state-of-the-art capabilities for probing the atmospheric boundary layer: The XPIA field campaign

AbstractTo assess current capabilities for measuring flow within the atmospheric boundary layer, including within wind farms, the U.S. Department of Energy sponsored the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign at the Boulder Atmospheric Observatory (BAO) in spring 2015. Herein, we summarize the XPIA field experiment, highlight novel measurement approaches, and quantify uncertainties associated with these measurement methods. Line-of-sight velocities measured by scanning lidars and radars exhibit close agreement with tower measurements, despite differences in measurement volumes. Virtual towers of wind measurements, from multiple lidars or radars, also agree well with tower and profiling lidar measurements. Estimates of winds over volumes from scanning lidars and radars are in close agreement, enabling the assessment of spatial variability. Strengths of the radar systems used here include high scan rates, large domain coverage, and availability during most precipita...

[1]  James R. Jordan,et al.  Removing Ground and Intermittent Clutter Contamination from Wind Profiler Signals Using Wavelet Transforms , 1997 .

[2]  Shane D. Mayor,et al.  Two-Dimensional Vector Wind Fields from Volume Imaging Lidar Data , 2001 .

[3]  Joachim Peinke,et al.  How to improve the estimation of power curves for wind turbines , 2008 .

[4]  J. Lundquist,et al.  Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans , 2016 .

[5]  S. Loyer,et al.  Spatial study of the wake meandering using modelled wind turbines in a wind tunnel , 2011 .

[6]  Julie K. Lundquist,et al.  Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics , 2015 .

[7]  M. Kühn,et al.  Wake Measurements of a Multi-MW Wind Turbine with Coherent Long-Range Pulsed Doppler Wind Lidar , 2010 .

[8]  Jeffrey D. Mirocha,et al.  Implementation of a Generalized Actuator Disk Wind Turbine Model into the Weather Research and Forecasting Model for Large-Eddy Simulation , 2014 .

[9]  D. N. Asimakopoulos,et al.  A field study of the wake behind a 2 MW wind turbine , 1988 .

[10]  J. Lundquist,et al.  Atmospheric stability affects wind turbine power collection , 2011 .

[11]  Peter T. May,et al.  The Accuracy of RASS Temperature Measurements , 1989 .

[12]  J. Wilczak,et al.  Sonic Anemometer Tilt Correction Algorithms , 2001 .

[13]  Julie K. Lundquist,et al.  The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar , 2013, Boundary-Layer Meteorology.

[14]  Christian Masson,et al.  Influence of atmospheric stability on wind turbine power performance curves , 2006 .

[15]  Fernando Porté-Agel,et al.  3D Turbulence Measurements Using Three Synchronous Wind Lidars: Validation against Sonic Anemometry , 2014 .

[16]  J. Lundquist,et al.  The modification of wind turbine performance by statistically distinct atmospheric regimes , 2012 .

[17]  Jie Zhang,et al.  Wind Power Ramp Event Forecasting Using a Stochastic Scenario Generation Method , 2015, IEEE Transactions on Sustainable Energy.

[18]  J. Michalakes,et al.  A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics , 2012 .

[19]  Luca Delle Monache,et al.  Meteorology For Coastal/Offshore Wind Energy In The United States: Recommendations And Research Needs For The Next 10 Years , 2014 .

[20]  Jimmy W. Voyles,et al.  The Arm Climate Research Facility: A Review of Structure and Capabilities , 2013 .

[21]  Jerry Allwine,et al.  Linearly Organized Turbulence Structures Observed Over a Suburban Area by Dual-Doppler Lidar , 2008 .

[22]  J. Mann,et al.  Conically scanning lidar error in complex terrain , 2009 .

[23]  Robert M. Banta,et al.  Doppler Lidar–Based Wind-Profile Measurement System for Offshore Wind-Energy and Other Marine Boundary Layer Applications , 2012 .

[24]  Martin Kühn,et al.  The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms , 2015 .

[25]  Bhaskar Dasgupta,et al.  The Stewart platform manipulator: a review , 2000 .

[26]  Fernando Porté-Agel,et al.  Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms , 2011 .

[27]  Morten Nielsen,et al.  Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm , 2007 .

[28]  Phillip M. Stepanian,et al.  A Time Series Sodar Simulator Based on Large-Eddy Simulation , 2014 .

[29]  Neil Kelley,et al.  3D Volumetric Analysis of Wind Turbine Wake Properties in the Atmosphere Using High-Resolution Doppler Lidar , 2015 .

[30]  D. Muñoz‐Esparza,et al.  Bridging the Transition from Mesoscale to Microscale Turbulence in Numerical Weather Prediction Models , 2014, Boundary-Layer Meteorology.

[31]  S. Albers,et al.  Thermodynamic and liquid profiling during the 2010 Winter Olympics , 2013 .

[32]  Guy N. Pearson,et al.  An Analysis of the Performance of the UFAM Pulsed Doppler Lidar for Observing the Boundary Layer , 2009 .

[33]  Phillip B. Chilson,et al.  LABLE: A Multi-Institutional, Student-Led, Atmospheric Boundary Layer Experiment , 2015 .

[34]  John L. Schroeder,et al.  Documenting Wind Speed and Power Deficits behind a Utility-Scale Wind Turbine , 2013 .

[35]  Julie K. Lundquist,et al.  Mesoscale Influences of Wind Farms throughout a Diurnal Cycle , 2012 .

[36]  H. Fernando,et al.  Coplanar Doppler Lidar Retrieval of Rotors from T-REX , 2010 .

[37]  J. Lundquist,et al.  Identification of Tower-Wake Distortions Using Sonic Anemometer and Lidar Measurements , 2016 .

[38]  Julia Gottschall,et al.  Can wind lidars measure turbulence , 2011 .

[39]  J. Lundquist,et al.  Observing and Simulating the Summertime Low-Level Jet in Central Iowa , 2015 .

[40]  A. Swift,et al.  Speed and Direction Shear in the Stable Nocturnal Boundary Layer , 2009 .

[41]  Laura Bianco,et al.  Implementation of a Gabor Transform Data Quality-Control Algorithm for UHF Wind Profiling Radars , 2013 .

[42]  G.J.W. Van Bussel,et al.  Influence of atmospheric stability on wind turbine loads , 2013 .

[43]  D. Muñoz‐Esparza,et al.  A stochastic perturbation method to generate inflow turbulence in large-eddy simulation models: Application to neutrally stratified atmospheric boundary layers , 2015 .

[44]  Wayne K. Hocking,et al.  Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: A review , 1985 .

[45]  J. C. Liljegren,et al.  A multichannel radiometric profiler of temperature, humidity, and cloud liquid , 2003 .

[46]  Ronald Calhoun,et al.  A Modified Optimal Interpolation Technique for Vector Retrieval for Coherent Doppler LIDAR , 2012, IEEE Geoscience and Remote Sensing Letters.

[47]  J. Lundquist,et al.  Nocturnal Low-Level Jet Characteristics Over Kansas During Cases-99 , 2002 .

[49]  J. Lundquist,et al.  Dissipation of Turbulence in the Wake of a Wind Turbine , 2013, Boundary-Layer Meteorology.

[50]  Caroline Draxl,et al.  Investigating wind turbine impacts on near-wake flow using profiling lidar data and large-eddy simulations with an actuator disk model , 2015 .

[51]  Kiran Bhaganagar,et al.  The effects of mean atmospheric forcings of the stable atmospheric boundary layer on wind turbine wake , 2015 .

[52]  Valerie-Marie Kumer,et al.  Characterisation of Single Wind Turbine Wakes with Static and Scanning WINTWEX-W LiDAR Data , 2015 .

[53]  F. Sotiropoulos,et al.  On the statistics of wind turbine wake meandering: An experimental investigation , 2015 .

[54]  John L. Schroeder,et al.  Coupling Doppler radar‐derived wind maps with operational turbine data to document wind farm complex flows , 2015 .

[55]  Frank S. Marzano,et al.  Combining Microwave Radiometer and Wind Profiler Radar Measurements for High-Resolution Atmospheric Humidity Profiling , 2005 .

[56]  G. Larsen,et al.  Light detection and ranging measurements of wake dynamics part I: one‐dimensional scanning , 2010 .

[57]  Evan A. Kalina,et al.  Stability and turbulence in the atmospheric boundary layer: A comparison of remote sensing and tower observations , 2012 .

[58]  Stephen Orlando,et al.  Experimental study of the effect of tower shadow on anemometer readings , 2011 .

[59]  Jacob Berg,et al.  Addressing Spatial Variability of Surface-Layer Wind with Long-Range WindScanners , 2015 .

[60]  Christoph Knigge,et al.  Scopes and Challenges of Dual-Doppler Lidar Wind Measurements—An Error Analysis , 2013 .

[61]  Paul Joe,et al.  Thermodynamic Atmospheric Profiling During the 2010 Winter Olympics Using Ground-Based Microwave Radiometry , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[62]  Shane D. Mayor,et al.  Optimization of the Cross-Correlation Algorithm for Two-Component Wind Field Estimation from Single Aerosol Lidar Data and Comparison with Doppler Lidar , 2016 .

[63]  J. D. Horn,et al.  THE TOWER SHADOW EFFECT , 1966 .

[64]  Torben Mikkelsen,et al.  Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer , 2008 .

[65]  Neil Kelley,et al.  Lidar Investigation of Atmosphere Effect on a Wind Turbine Wake , 2013 .

[67]  Julie K. Lundquist,et al.  Utility-Scale Wind Turbine Wake Characterization Using Nacelle-Based Long-Range Scanning Lidar , 2014 .

[68]  Fernando Porté-Agel,et al.  Volumetric Lidar Scanning of Wind Turbine Wakes under Convective and Neutral Atmospheric Stability Regimes , 2014 .

[69]  J. Kaimal,et al.  The Boulder Atmospheric Observatory , 1983 .

[70]  J. Mann,et al.  A review of turbulence measurements using ground-based wind lidars , 2013 .

[71]  Neil Kelley,et al.  Horizontal-Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures , 2008 .

[72]  Christian J. Grund,et al.  High-Resolution Doppler Lidar for Boundary Layer and Cloud Research , 2001 .

[73]  Torben Mikkelsen,et al.  A spinner‐integrated wind lidar for enhanced wind turbine control , 2013 .

[74]  David Schlipf,et al.  Nonlinear model predictive control of wind turbines using LIDAR , 2013 .

[75]  B. Carissimo,et al.  Turbulent Dissipation Rate In The Boundary Layer Via UHF Wind Profiler Doppler Spectral Width Measurements , 2002 .

[76]  Julie K. Lundquist,et al.  Quantifying Wind Turbine Wake Characteristics from Scanning Remote Sensor Data , 2014 .

[77]  Ronald Calhoun,et al.  Coherent Doppler lidar for wind farm characterization , 2013 .

[78]  F. Guillén,et al.  Multi-site testing and evaluation of remote sensing instruments for wind energy applications , 2013 .

[79]  V. Lehmann,et al.  Advanced Intermittent Clutter Filtering for Radar Wind Profiler , 2008 .

[80]  F. Porté-Agel,et al.  Field Measurements of Wind Turbine Wakes with Lidars , 2013 .

[81]  Julie K. Lundquist,et al.  Performance of a Wind-Profiling Lidar in the Region of Wind Turbine Rotor Disks , 2010 .

[82]  Robert M. Banta,et al.  Turbulent Velocity-Variance Profiles in the Stable Boundary Layer Generated by a Nocturnal Low-Level Jet , 2006 .