A Microwave Modeling Oxymoron?: Low-Frequency Measurements for Microwave Device Modeling

For a number of decades, the modeling of microwave transistors relied on specific well-known characterization methods. Those methods include S-parameters measurement through vector network analyzers (VNAs) ranging from the lower end of the RF spectrum to the millimeter-wave (mm-wave) region and load pull measurements of transistors used for the design of power amplifiers (PAs). Later, the availability of more powerful computer-aided design (CAD) software enabled the need for models of active microwave devices, thus driving a huge amount of research activity on microwave transistor modeling. Simultaneously, new transistor technologies were invented, combining working concepts such as heterojunction bipolar transistors (HBTs), metal semiconductor field effect transistors (MESFETs) or high electron mobility transistors (HEMTs) and new materials such as gallium arsenide (GaAs), gallium nitride (GaN), indium phosphide (InP), and silicon germanium (SiGe), to cite only the main ones.

[1]  J. Muth,et al.  Thermal Conductivity of GaN Grown on Silicon Substrates , 2003 .

[2]  L.K.J. Vandamme,et al.  Experimental studies on 1/f noise , 1981 .

[4]  M. Prigent,et al.  Low-Frequency Noise Measurements of Bipolar Devices Under High DC Current Density: Whether Transimpedance or Voltage Amplifiers , 2006, 2006 European Microwave Integrated Circuits Conference.

[6]  Fabrizio Bonani,et al.  Noise in semiconductor devices: modelling and simulation , 2001 .

[7]  C. Delseny,et al.  Noise correlation measurements in bipolar transistors. I. Theoretical expressions and extracted current spectral densities , 1997 .

[8]  J. C. Pedro,et al.  A Multiple Time-Scale Power Amplifier Behavioral Model for Linearity and Efficiency Calculations , 2013, IEEE Transactions on Microwave Theory and Techniques.

[9]  Anthony E. Parker,et al.  Circuit implementation of a theoretical model of trap centres in GaAs and GaN devices , 2007, SPIE Micro + Nano Materials, Devices, and Applications.

[10]  F. Hooge 1/f noise sources , 1994 .

[11]  Roberto Saletti,et al.  Ultra low-noise preamplifier for low-frequency noise measurements in electron devices , 1991 .

[12]  J. Graffeuil,et al.  Transimpedance amplifier-based full low-frequency noise characterization setup for Si/SiGe HBTs , 2001 .

[13]  T.G.M. Kleinpenning,et al.  Location of low-frequency noise sources in submicrometer bipolar transistors , 1992 .

[14]  M. Prigent,et al.  Experimental characterization of the cyclostationary low-frequency noise of microwave semiconductor devices under large signal operation , 2010, International Journal of Microwave and Wireless Technologies.

[15]  L.K.J. Vandamme,et al.  1/f noise in MOS devices, mobility or number fluctuations? , 1994 .

[16]  A. Raffo,et al.  Waveforms-Only Based Nonlinear De-Embedding in Active Devices , 2012, IEEE Microwave and Wireless Components Letters.

[17]  A Large-Signal Equivalent Circuit Sub strate-Induced Drain-Lae Phenome 'S , 1996 .

[18]  A. van der Ziel,et al.  Noise in solid-state devices and lasers , 1970 .

[19]  L. Escotte,et al.  Broadband Frequency Dispersion Small-Signal Modeling of the Output Conductance and Transconductance in AlInN/GaN HEMTs , 2013, IEEE Transactions on Electron Devices.

[20]  F. Filicori,et al.  Nonlinear thermal resistance characterization for compact electrothermal GaN HEMT modelling , 2010, The 5th European Microwave Integrated Circuits Conference.

[21]  J. Cressler SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications , 1998 .

[22]  F. Filicori,et al.  Nonquasi-static large-signal model of GaN FETs through an equivalent voltage approach , 2008 .

[23]  P. Roblin,et al.  New Trends for the Nonlinear Measurement and Modeling of High-Power RF Transistors and Amplifiers With Memory Effects , 2012, IEEE Transactions on Microwave Theory and Techniques.

[24]  Jan Verspecht,et al.  Extension of X-parameters to include long-term dynamic memory effects , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[25]  David J. Allstot,et al.  Modeling of frequency and temperature effects in GaAs MESFETs , 1990 .

[26]  S. Nagel,et al.  Wide‐frequency specific heat spectrometer , 1987 .

[27]  J. Verspecht,et al.  Introduction to measurements for power transistor characterization , 2008, IEEE Microwave Magazine.

[28]  Anthony E. Parker,et al.  Electrothermal gate and channel breakdown model for prediction of power and efficiency in FET amplifiers , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[29]  R. Quere,et al.  An Electrothermal Model of High Power HBTs for High Efficiency L/S Band Amplifiers , 2008, 2008 European Microwave Integrated Circuit Conference.

[30]  A. van der Ziel,et al.  Location of 1/f noise sources in BJT's and HBJT's—I. theory , 1986, IEEE Transactions on Electron Devices.

[31]  M. Prigent,et al.  An advanced low-frequency noise model of GaInP-GaAs HBT for accurate prediction of phase noise in oscillators , 2005, IEEE Transactions on Microwave Theory and Techniques.

[32]  R. Quéré,et al.  Experimental Characterization and Modeling of the Thermal Behavior of SiGe HBTs , 2012, IEEE Transactions on Electron Devices.

[33]  M. Borgarino Full direct low frequency noise characterization of GaAs heterojunction bipolar transistors , 2005 .

[34]  D. Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .

[35]  C. Camacho-Peñalosa,et al.  Modelling frequency dependence of output impedance of a microwave MESFET at low frequencies , 1985 .

[36]  T. Reveyrand,et al.  Low frequency parasitic effects in RF transistors and their impact on power amplifier performances , 2012, WAMICON 2012 IEEE Wireless & Microwave Technology Conference.

[37]  J.C.M. Hwang,et al.  A phenomenologically based transient SPICE model for digitally modulated RF performance characteristics of GaAs MESFETs , 2001 .

[38]  T. Reveyrand,et al.  Modeling of trap induced dispersion of large signal dynamic Characteristics of GaN HEMTs , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[39]  R. Quéré,et al.  An Electrothermal Model for AlGaN/GaN Power HEMTs Including Trapping Effects to Improve Large-Signal Simulation Results on High VSWR , 2007, IEEE Transactions on Microwave Theory and Techniques.

[40]  Steve C. Cripps,et al.  Advanced Techniques in RF Power Amplifier Design , 2002 .

[41]  Anthony E. Parker,et al.  Characterizing drain current dispersion in GaN HEMTs with a new trap model , 2009, 2009 European Microwave Integrated Circuits Conference (EuMIC).

[42]  U. Mishra,et al.  The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs , 2001 .

[43]  F. Filicori,et al.  Characterization of the Nonlinear Thermal Resistance and Pulsed Thermal Dynamic Behavior of AlGaN–GaN HEMTs on SiC , 2013, IEEE Transactions on Microwave Theory and Techniques.

[44]  A. Santarelli,et al.  Empirical modeling of GaN FETs for nonlinear microwave circuit applications , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[45]  M. Paggi,et al.  Nonlinear GaAs MESFET modeling using pulsed gate measurements , 1988, 1988., IEEE MTT-S International Microwave Symposium Digest.

[47]  M. Prigent,et al.  A low power, low phase noise 10 GHz MIC oscillator , 2008, 2008 IEEE International Frequency Control Symposium.

[48]  J. Rathmell,et al.  Contribution of self heating to intermodulation in FETs , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[49]  Jean-Christophe Nallatamby,et al.  Numerical simulation and characterization of trapping noise in InGaP–GaAs heterojunctions devices at high injection , 2013 .

[50]  Gabriel M. Crean,et al.  Defect study of GaInP/GaAs based heterojunction bipolar transistor emitter layer , 2002 .