Magnetic and thermodynamic properties of GdCu4Au

The results of magnetic susceptibility, χ(T), magnetization, σ(μ0H), and specific heat, CP(T), for GdCu4Au are presented. The room temperature powder X-ray diffraction studies indicate a cubic MgCu4Sn – type crystal structure with space group F4̄3m (No.216). The low field dc χ(T) data shows an antiferromagnetic – like (AFM) anomaly associated with a Néel temperature TN = 10.8 K for GdCu4Au. In the paramagnetic region above TN, χ(T) data follows the Curies – Weiss law with an effective magnetic moment μeff = 7.444(1) μB and paramagnetic Weiss temperature θP = -15.01(2) K. The experimental value of is close to the calculated value of 7.94 μB expected for the free Gd3+-ion. The field-cooled (FC) and zero-field-cooled (ZFC) χ(T) data provide evidence for the formation of spin-glass state with a freezing temperature Tf = 15 K. σ(μ0H) measured in the ordering region (below TN) shows that GdCu4Au undergoes metamagnetic transition above 0.7 T, characterized by a slight upward curvature above this field. Measurement of σ(μ0H) in the paramagnetic regions show a linear behaviour up to 0.7 T and a downward curvature at high fields. CP(T) data shows an AFM – like phase transition at TN = 10.4 K close to the phase transition observed in χ(T) results. The 4f-electron entropy reaches the value of Rln2 close to TN at 9.02 K and reaches the value of Rln(2J + 1) at T = 180 K.

[1]  P. Bonville,et al.  Crystal structure and magnetic properties of RCu5−xPdx (R=Pr, Nd, Sm and Eu) alloys , 2009 .

[2]  C. Bernini,et al.  Structure and magnetic properties of RCu4Mn "R=La-Gd… , 2008 .

[3]  M. Falkowski,et al.  Magnetic properties of hexagonal RNi4Si (R = rare earth) compounds , 2007 .

[4]  N. I. Kourov,et al.  Low-temperature specific heat of GdCu, GdCu2, and GdCu5 antiferromagnets , 2007 .

[5]  G. Chełkowska,et al.  Magnetic properties and electronic structure of GdNi4Si compound , 2006 .

[6]  A. Strydom,et al.  Magnetic behaviour of TbCu4Ag and DyCu4Ag , 2000 .

[7]  H. Nakamura,et al.  The partially disordered state of the frustrated face-centred cubic antiferromagnet , 1999 .

[8]  Z. Fisk,et al.  Hall effect in YbXCu4 and the role of carrier density in the YbInCu4 valence transition , 1998 .

[9]  P. Brommer,et al.  Magnetic and electrical properties of the pseudo-binary GdCu5−xAlx compounds , 1998 .

[10]  T. Kuwai,et al.  Transport properties of RInCu4 with C15b-type structure , 1995 .

[11]  Haruki Nakamura,et al.  Magnetic and transport properties in the low-carrier system Gd1-xLuxInCu4 , 1994 .

[12]  H. Nakamura,et al.  Anomalous Transport and Thermal Properties of YInCu4 , 1993 .

[13]  T. Kaneko,et al.  Magnetic properties of RCu4In (R=Gd-Er) intermetallic compounds , 1992 .

[14]  A. Hasegawa,et al.  Electronic structures of plutonium monochalcogenides , 1992 .

[15]  H. Nakazawa,et al.  Magnetic Properties of Cubic Intermetallic Compounds RCu4Pd (R=Gd, Tb, Dy, Ho and Er) , 1989 .

[16]  J. Barandiaran,et al.  Magnetic properties and magnetic structure of hexagonal GdGa2 and GdCu5 compounds , 1989 .

[17]  T. Kaneko,et al.  Magnetic properties of TbCu4Pd and TbCu4Pt , 1987 .

[18]  S. Arai,et al.  Magnetic Properties of Cubic RAuCu4 (R=Gd, Tb, Dy, Ho and Er) Intermetallic Compounds , 1986 .

[19]  S. Malik,et al.  Crystal structure of RCu4Ag and RCu4Al (R = Rare Earth) intermetallic compounds , 1978 .

[20]  K. Andres,et al.  Nuclear-induced ferromagnetism below 50 mK in the Van Vleck paramagnet PrCu$sub 5$ , 1975 .

[21]  K. Buschow,et al.  Composition and crystal structure of hexagonal Cu-rich rare earth–copper compounds , 1971 .

[22]  K. Buschow,et al.  Rare-earth copper compounds with AuBe5 structure , 1969 .

[23]  J. Wernick,et al.  Transition element–rare earth compounds with Cu5Ca structure , 1959 .

[24]  J. Sarrao PHYSICS OF YBINCU4 AND RELATED COMPOUNDS , 1999 .

[25]  E. Bauer,et al.  CeCu5: ANOTHER KONDO LATTICE SHOWING MAGNETIC ORDER , 1987 .

[26]  G. D. Rieck,et al.  International tables for X-ray crystallography , 1962 .