A 3‐year plankton DNA metabarcoding survey reveals marine biodiversity patterns in Australian coastal waters

To use a long‐term collection of bulk plankton samples to test the capacity of DNA metabarcoding to characterize the spatial and seasonal patterns found within a range of zooplankton communities, and investigate links with concurrent abiotic data collected as part of Australia's Integrated Marine Observing System (IMOS) programme.

[1]  N. Zimmermann,et al.  Major restructuring of marine plankton assemblages under global warming , 2021, Nature Communications.

[2]  A. Zingone,et al.  Metazoan diversity and seasonality through eDNA metabarcoding at a Mediterranean long-term ecological research site , 2021 .

[3]  A. Richardson,et al.  Global warming is causing a more pronounced dip in marine species richness around the equator , 2021, Proceedings of the National Academy of Sciences.

[4]  A. Polanowski,et al.  Capturing open ocean biodiversity: Comparing environmental DNA metabarcoding to the continuous plankton recorder , 2020, Molecular ecology.

[5]  X. Shan,et al.  Inter-annual and seasonal variations in zooplankton community structure in the Yellow Sea with possible influence of climatic variability , 2020, Progress in Oceanography.

[6]  S. Strake,et al.  Zooplankton indicator-based assessment in relation to site location and abiotic factors: a case study from the Gulf of Riga , 2020, Environmental Monitoring and Assessment.

[7]  Shaun P. Wilkinson,et al.  Development of a multi-assay approach for monitoring coral diversity using eDNA metabarcoding , 2019, Coral Reefs.

[8]  Martin Edwards,et al.  A Global Plankton Diversity Monitoring Program , 2019, Front. Mar. Sci..

[9]  S. Edgar,et al.  Australia’s Long-Term Plankton Observations: The Integrated Marine Observing System National Reference Station Network , 2019, Front. Mar. Sci..

[10]  Benjamin J. Saunders,et al.  Marine environmental DNA biomonitoring reveals seasonal patterns in biodiversity and identifies ecosystem responses to anomalous climatic events , 2019, PLoS genetics.

[11]  H. Possingham,et al.  Changes in human footprint drive changes in species extinction risk , 2018, Nature Communications.

[12]  C. Palacín,et al.  DNA metabarcoding of littoral hard-bottom communities: high diversity and database gaps revealed by two molecular markers , 2018, PeerJ.

[13]  G. Everaert,et al.  Multimodel inference to quantify the relative importance of abiotic factors in the population dynamics of marine zooplankton , 2018 .

[14]  A. Polanowski,et al.  Genetic monitoring of open ocean biodiversity: An evaluation of DNA metabarcoding for processing continuous plankton recorder samples , 2018, Molecular ecology resources.

[15]  P. Taberlet,et al.  Environmental DNA: For Biodiversity Research and Monitoring , 2018 .

[16]  E. Harvey,et al.  Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment , 2017, Scientific Reports.

[17]  T. Bracegirdle,et al.  More losers than winners in a century of future Southern Ocean seafloor warming , 2017 .

[18]  Francisco M. Cornejo-Castillo,et al.  Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition , 2017, Scientific Data.

[19]  M. Bunce,et al.  Assessing the trophic ecology of top predators across a recolonisation frontier using DNA metabarcoding of diets , 2017 .

[20]  Dáithí C. Murray,et al.  DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea) , 2017, Ecology and evolution.

[21]  L. Orlando,et al.  Planktonic foraminifera-derived environmental DNA extracted from abyssal sediments preserves patterns of plankton macroecology , 2017 .

[22]  R. Lenanton,et al.  Potential influence of a marine heatwave on range extensions of tropical fishes in the eastern Indian Ocean—Invaluable contributions from amateur observers , 2017 .

[23]  Lauren M. Sassoubre,et al.  Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding , 2017, PloS one.

[24]  Wayne Rochester,et al.  Modeling What We Sample and Sampling What We Model: Challenges for Zooplankton Model Assessment , 2017, Front. Mar. Sci..

[25]  B. Deagle,et al.  Effect of marker choice and thermal cycling protocol on zooplankton DNA metabarcoding studies , 2017, Ecology and evolution.

[26]  R. Korn,et al.  The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates , 2016, Scientific Reports.

[27]  Benjamin J. Saunders,et al.  Climate-driven regime shift of a temperate marine ecosystem , 2016, Science.

[28]  Frédéric J. J. Chain,et al.  Metabarcoding reveals strong spatial structure and temporal turnover of zooplankton communities among marine and freshwater ports , 2016 .

[29]  Kristine Bohmann,et al.  Tag jumps illuminated – reducing sequence‐to‐sample misidentifications in metabarcoding studies , 2015, Molecular ecology resources.

[30]  M. Úriz,et al.  Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons , 2015, PloS one.

[31]  F. Joos,et al.  Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios , 2015, Science.

[32]  Frédéric J. J. Chain,et al.  Divergence thresholds and divergent biodiversity estimates: can metabarcoding reliably describe zooplankton communities? , 2015, Ecology and evolution.

[33]  A. Richardson,et al.  Whale sharks target dense prey patches of sergestid shrimp off Tanzania , 2015, Journal of plankton research.

[34]  M. Pinsky,et al.  Marine defaunation: Animal loss in the global ocean , 2015, Science.

[35]  Wayne Rochester,et al.  IMOS National Reference Stations: A Continental-Wide Physical, Chemical and Biological Coastal Observing System , 2014, PloS one.

[36]  Marti J. Anderson,et al.  Measures of precision for dissimilarity-based multivariate analysis of ecological communities , 2014, Ecology letters.

[37]  P. Somerfield,et al.  Next Generation Sequencing Reveals the Hidden Diversity of Zooplankton Assemblages , 2013, PloS one.

[38]  J. Bruno,et al.  Climate change and marine life , 2012, Biology Letters.

[39]  Martin Edwards,et al.  Changing zooplankton seasonality in a changing ocean: Comparing time series of zooplankton phenology , 2012 .

[40]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[41]  P. Thompson,et al.  Plankton. A Guide to Their Ecology and Monitoring for Water Quality , 2012 .

[42]  S. Schuster,et al.  Integrative analysis of environmental sequences using MEGAN4. , 2011, Genome research.

[43]  Martin Edwards,et al.  Multi-decadal oceanic ecological datasets and their application in marine policy and management. , 2010, Trends in ecology & evolution.

[44]  Robert C. Edgar,et al.  Search and clustering orders of magnitude faster than BLAST , 2010, Bioinform..

[45]  M. Attrill,et al.  Seasonal dynamics of meroplankton assemblages at station L4 , 2010 .

[46]  Marc Picheral,et al.  Digital zooplankton image analysis using the ZooScan integrated system , 2010 .

[47]  A. Zuur,et al.  Mixed Effects Models and Extensions in Ecology with R , 2009 .

[48]  A. Richardson Plankton and Climate , 2008 .

[49]  A. Metaxas,et al.  High recruitment of the introduced bryozoan Membranipora membranacea is associated with kelp bed defoliation in Nova Scotia, Canada , 2008 .

[50]  C. Crawford,et al.  Population characteristics and planktonic larval stage of the New Zealand screwshell Maoricolpus roseus. , 2008 .

[51]  Ruth M. Casper,et al.  Detecting prey from DNA in predator scats: a comparison with morphological analysis, using Arctocephalus seals fed a known diet , 2007 .

[52]  H. Lenihan,et al.  Depletion, Degradation, and Recovery Potential of Estuaries and Coastal Seas , 2006, Science.

[53]  M. Hindell,et al.  Molecular scatology as a tool to study diet: analysis of prey DNA in scats from captive Steller sea lions , 2005, Molecular ecology.

[54]  B. Beanlands,et al.  The next generation of Optical Plankton Counter: the Laser-OPC , 2004 .

[55]  M. Edwards,et al.  Impact of climate change on marine pelagic phenology and trophic mismatch , 2004, Nature.

[56]  P. C. Reid,et al.  Reorganization of North Atlantic Marine Copepod Biodiversity and Climate , 2002, Science.

[57]  K. Bjorndal,et al.  Historical Overfishing and the Recent Collapse of Coastal Ecosystems , 2001, Science.

[58]  Marti J. Anderson,et al.  A new method for non-parametric multivariate analysis of variance in ecology , 2001 .

[59]  A. Vincent Trade in pegasid fishes (sea moths), primarily for traditional Chinese medicine , 1997, Oryx.

[60]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[61]  Patrick Breheny,et al.  Visualization of Regression Models Using visreg , 2017, R J..

[62]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[63]  Phillip J. Clapham,et al.  Humpback Whale: Megaptera novaeangliae , 2009 .

[64]  B. Vanhoorne,et al.  Aphia for a World Register of Marine Species (WoRMS) , 2008 .

[65]  Raymond N. Gorley,et al.  PERMANOVA+ for PRIMER. Guide to software and statistical methods , 2008 .

[66]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[67]  B. Ripley,et al.  Random and Mixed Effects , 2002 .

[68]  M. Potter,et al.  Notes on the Biology of the Portunid Crab, Portunus sanguinolentus (Herbst), in Subtropical Queensland Waters , 1989 .