Bifurcations of travelling wave solutions for the generalized (2+1)-dimensional Boussinesq-Kadomtsev-Petviashvili equation

Abstract By using the bifurcation theory of dynamical systems, we study the generalized (2+1)-dimensional Boussinesq–Kadomtsev–Petviashvili equation, the existence of solitary wave solutions, compacton solutions, periodic cusp wave solutions and uncountably infinite many smooth periodic wave solutions are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given. Some exact explicit parametric representations of the above waves are determined.

[1]  J. Leur,et al.  The nth reduced BKP hierarchy, the string equation and BW1+∞-constraints , 1996 .

[2]  Wentao Huang,et al.  Bifurcations of travelling wave solutions for the K(n, -n, 2n) equations , 2008, Appl. Math. Comput..

[3]  Masaki Kashiwara,et al.  Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type , 1982 .

[4]  Wentao Huang,et al.  Bifurcations of travelling wave solutions for the generalized double sinh-Gordon equation , 2007, Appl. Math. Comput..

[5]  Jibin Li,et al.  TRAVELING WAVE SOLUTIONS FOR A CLASS OF NONLINEAR DISPERSIVE EQUATIONS , 2002 .

[6]  Yan Wang,et al.  New exact complex traveling wave solutions for (2+1)-dimensional BKP equation , 2009, Appl. Math. Comput..

[7]  Ljudmila A. Bordag,et al.  Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction , 1977 .

[8]  Johan Van De Leur The $n$--TH Reduced BKP Hierarchy, the String Equation and $BW_{1+\infty}$--Constraints , 1994 .

[9]  Ahmet Bekir,et al.  Analytic solutions of the (2 + 1)-dimensional nonlinear evolution equations using the sine-cosine method , 2009, Appl. Math. Comput..

[10]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[11]  Paul F. Byrd,et al.  Handbook of elliptic integrals for engineers and scientists , 1971 .

[12]  A. Jeffrey,et al.  Weak Nonlinear Dispersive Waves: A Discussion Centered Around the Korteweg–De Vries Equation , 1972 .

[13]  M. Jimbo,et al.  TRANSFORMATION GROUPS FOR SOLITON EQUATIONS , 1982 .