A Note on Positive Maps and Classification of States
暂无分享,去创建一个
[1] Jun Tomiyama,et al. Indecomposable Positive Maps in Matrix Algebras , 1988, Canadian Mathematical Bulletin.
[2] A. Robertson,et al. Positive extensions of automorphisms of spin factors , 1983, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[3] E. Størmer. DECOMPOSABLE POSITIVE MAPS ON C*-ALGEBRAS , 1982 .
[4] A. Robertson. Positive Projections on C*-Algebras and an Extremal Positive Map , 1985 .
[5] E. Størmer. Positive linear maps of operator algebras , 2012 .
[6] S. Woronowicz. Positive maps of low dimensional matrix algebras , 1976 .
[7] Karol Zyczkowski,et al. On Duality between Quantum Maps and Quantum States , 2004, Open Syst. Inf. Dyn..
[8] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[9] K. Lendi,et al. Quantum Dynamical Semigroups and Applications , 1987 .
[10] A. Jamiołkowski. An effective method of investigation of positive maps on the set of positive definite operators , 1974 .
[11] H. Osaka. Indecomposable positive maps in low dimensional matrix algebras , 1991 .
[12] Kil-Chan Ha,et al. Entangled states with positive partial transposes arising from indecomposable positive linear maps , 2003, quant-ph/0305005.
[13] P. M. Mathews,et al. STOCHASTIC DYNAMICS OF QUANTUM-MECHANICAL SYSTEMS , 1961 .
[14] Kil-Chan Ha. A class of atomic positive linear maps in matrix algebras , 2003 .
[15] Man-Duen Choi. Completely positive linear maps on complex matrices , 1975 .
[16] E. Sudarshan,et al. Extreme affine transformations , 1976 .
[17] W. Stinespring. Positive functions on *-algebras , 1955 .
[18] G. Kimura. The Bloch Vector for N-Level Systems , 2003, quant-ph/0301152.
[19] B. M. Fulk. MATH , 1992 .
[20] S. Woronowicz. Nonextendible positive maps , 1976 .
[21] A. Guyan Robertson. Schwarz inequalities and the decomposition of positive maps on C *-algebras , 1983 .
[22] Kadison,et al. Isometries of Operator Algebras , 1951 .
[23] Andrzej Kossakowski,et al. A Class of Linear Positive Maps in Matrix Algebras II , 2004, Open Syst. Inf. Dyn..
[24] B. Terhal. A family of indecomposable positive linear maps based on entangled quantum states , 1998, quant-ph/9810091.
[25] Seung-Hyeok Kye,et al. DUALITY FOR POSITIVE LINEAR MAPS IN MATRIX ALGEBRAS , 2000 .
[26] H. Osaka. A Class of Extremal Positive Maps in 3×3 Matrix Algebras , 1992 .
[27] J. Pillis. Linear transformations which preserve hermitian and positive semidefinite operators. , 1967 .
[28] Werner,et al. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.
[29] Erling Størmer,et al. Extension of positive maps into B (H) , 1986 .
[30] Ericka Stricklin-Parker,et al. Ann , 2005 .
[31] Seung-Hyeok Kye,et al. Generalized Choi maps in three-dimensional matrix algebra , 1992 .
[32] Andrzej Jamiolkowski. Errata: On a Stroboscopic Approach to Quantum Tomography of Qudits Governed by Gaussian Semigroups - Open Sys. Information Dyn. 11, 63 (2003) , 2004, Open Syst. Inf. Dyn..
[33] Masanori Ohya,et al. How Can We Observe and Describe Chaos? , 2003, Open Syst. Inf. Dyn..
[34] William Arveson,et al. Subalgebras ofC*-algebras , 1969 .
[35] E. Størmer. On the Jordan structure of *-algebras , 1965 .
[36] Kil-Chan Ha,et al. Atomic positive linear maps in matrix algebras , 1998 .
[37] Erling Størmer. Decomposition of positive projections onC*-algebras , 1980 .
[38] L. Gurvits,et al. Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.
[39] A. Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .
[40] Hiroyuki Osaka,et al. A series of absolutely indecomposable positive maps in matrix algebras , 1993 .
[41] Man-Duen Choi. Positive semidefinite biquadratic forms , 1975 .
[42] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.