In this paper, we estimate the azimuth, the elevation, and the time of arrival of diffuse sources using the covariance matching estimator (COMET) algorithm. Previous works dealt with azimuth estimation of diffuse sources or azimuth and time of arrival estimation of point sources. However, in realistic situations, a tridimensional diffuse source localization is needed, which is the main objective of this paper. We show that the dimensionality of the COMET algorithm can be reduced by separating the estimation of the different source powers and the noise variance from that of the remaining parameters, namely the azimuth, the elevation, the time of arrival, and the corresponding angular and temporal spreads. As COMET still involves a multidimensional nonlinear optimization, we choose, in this purpose, the alternating projection algorithm to alleviate the corresponding complexity. The multiple signal classification (MUSIC) algorithm is processed to initialize the so-resulted algorithm. Simulations of the proposed algorithm are carried in different contexts and compared to the Cramér-Rao Bound, MUSIC algorithm, and dispersed signal parametric estimation simulation results.RésuméDans cet article, nous utilisons l’algorithme “covariance matching estimator” (COMET) afin d’estimer l’azimut, l’élévation et le temps d’arrivé de sources diffuses. Les travaux antérieurs ont traité l’estimation de l’azimut de sources diffuses ou l’estimation de l’azimut et le temps d’arrivé de sources ponctuelles. Dans cet article, on s’intéresse à des scénarios réalistes nécessitant une localisation tridimensionnelle de sources diffuses. Nous montrons que la complexité de l’algorithme COMET peut être réduite en séparant l’estimation des puissances des diverses sources et la variance du bruit du reste des paramètres, à savoir l’azimut, l’élévation, le temps d’arrivé et les déviations angulaires et temporelles correspondantes. Etant donnée que l’algorithme COMET nécessite une optimization non linéaire multidimensionnelle, nous utilisons l’algorithme des projections alternées afin d’alléger sa complexité. L’algorithme MUSIC “MUltiple SIgnal Classification algorithm” est utilisé afin d’initialiser l’algorithme ainsi obtenu. Des résultats de simulations de l’algorithme proposé sont présentés dans divers contextes et comparés à la Borne de Cramer Rao (BCR) et à des résultats de simulations des algorithmes MUSIC et “dispersed signal parametric estimation” (DISPARE).
[1]
Björn E. Ottersten,et al.
Low-complexity estimators for distributed sources
,
2000,
IEEE Trans. Signal Process..
[2]
Arogyaswami Paulraj,et al.
Joint angle and delay estimation using shift-invariance techniques
,
1998,
IEEE Trans. Signal Process..
[3]
Mats Bengtsson.
Antenna array signal processing for high rank data models
,
2000
.
[4]
Constantinos B. Papadias,et al.
Joint angle and delay estimation (JADE) for multipath signals arriving at an antenna array
,
1997,
IEEE Communications Letters.
[5]
Björn E. Ottersten,et al.
Estimation of nominal direction of arrival and angular spread using an array of sensors
,
1996,
Signal Process..
[6]
Shahrokh Valaee,et al.
Distributed source localization using ESPRIT algorithm
,
2001,
IEEE Trans. Signal Process..
[7]
Ilan Ziskind,et al.
Maximum likelihood localization of multiple sources by alternating projection
,
1988,
IEEE Trans. Acoust. Speech Signal Process..
[8]
D. Asztely,et al.
Modified array manifold for signal waveform estimation in wireless communications
,
1996,
Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers.
[9]
Arthur Jay Barabell,et al.
Improving the resolution performance of eigenstructure-based direction-finding algorithms
,
1983,
ICASSP.
[10]
P. Stoica,et al.
Decoupled estimation of DOA and angular spread for spatially distributed sources
,
1999
.
[11]
Yan Meng.
Estimation of Directions of Arrival of Spatially Dispersed Signals in High Resolution Array Processing
,
1995
.
[12]
Arogyaswami Paulraj,et al.
Estimation of multipath parameters in wireless communications
,
1998,
IEEE Trans. Signal Process..
[13]
Shahrokh Valaee,et al.
Parametric localization of distributed sources
,
1995,
IEEE Trans. Signal Process..
[14]
Björn E. Ottersten,et al.
A generalized array manifold model for local scattering in wireless communications
,
1997,
1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.