Robust H 2 performance analysis and synthesis of linear polytopic discrete-time periodic systems via LMIs

A particular class of uncertain linear discrete-time periodic systems is considered. The problem of robust stabilization of real polytopic linear discrete-time periodic systems via a periodic state-feedback control law is tackled here, along with H2 performance optimization. Using additional slack variables and the periodic Lyapunov lemma, an extended sufficient condition of robust H2 stabilization is proposed. Based on periodic parameter-dependent Lyapunov functions, this last condition is shown to be always less conservative than the more classic one based on the quadratic stability framework. This is illustrated on numerical examples from the literature.

[1]  P. Peres,et al.  a linear programming oriented procedure for quadratic stabilization of uncertain systems , 1989 .

[2]  Y. Ebihara,et al.  Robust controller synthesis with parameter-dependent Lyapunov variables: a dilated LMI approach , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[3]  Bassam Bamieh,et al.  The H 2 problem for sampled-data systems m for sampled-data systems , 1992 .

[4]  Marco Lovera,et al.  On the Zero Dynamics of Helicopter Rotor Loads , 1996, Eur. J. Control.

[5]  Bassam Bamieh,et al.  The 2 problem for sampled-data systems , 1992, Systems & Control Letters.

[6]  P. Colaneri Output stabilization via pole placement of discrete-time linear periodic systems , 1991 .

[7]  S. Bittanti,et al.  The Periodic Riccati Equation , 1991 .

[8]  D. Peaucelle,et al.  Robust state feedback D stabilization via a cone complementary algorithm , 2001, 2001 European Control Conference (ECC).

[9]  Dimitri Peaucelle,et al.  Discussion on: “Parameter-Dependent Lyapunov Function Approach to Stability Analysis and Design for Uncertain Systems with Time-Varying Delay” , 2005 .

[10]  Paolo Bolzern,et al.  The periodic Lyapunov equation , 1988 .

[11]  E. Fridman,et al.  A Projection Approach to H∞ Control of Time-Delay Systems , 2004 .

[12]  C. de Souza,et al.  An LMI approach to stabilization of linear discrete-time periodic systems , 2000 .

[13]  Liu Hsu,et al.  LMI characterization of structural and robust stability , 1998 .

[14]  Patrizio Colaneri,et al.  The extended periodic lyapunov lemma , 1985, Autom..

[15]  Adrian Stoica A unified algebraic approach to linear control design. R.E. Skelton, T. Iwasaki and K.M. Grigoriadis, Taylor & Francis, Ltd, London 1998, pp. IX+285, price £45. ISBN 0-7484-0592-5 , 2003 .

[16]  Jakob Stoustrup,et al.  Periodic H~2 Synthesis for Spacecraft Attitude Control with Magnetorquers , 2004 .

[17]  Antonio Tornambè,et al.  Robust output regulation and tracking for linear periodic systems under structured uncertainties , 1996, Autom..

[18]  J. Geromel,et al.  LMI characterization of structural and robust stability: the discrete-time case , 1999 .

[19]  Patrizio Colaneri,et al.  Invariant representations of discrete-time periodic systems , 2000, Autom..

[20]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[21]  Jamal Daafouz,et al.  Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties , 2001, Syst. Control. Lett..

[22]  E. Mathieu Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique. , 1868 .

[23]  J. Stoustrup,et al.  Generalized H 2 Control Synthesis for Periodic Systems , 2004 .

[24]  C. Scherer,et al.  New robust stability and performance conditions based on parameter dependent multipliers , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[25]  Patrizio Colaneri,et al.  Periodic control systems: Theoretical aspects , 2004 .

[26]  Marco Lovera Optimal Magnetic Momentum Control for Inertially Pointing Spacecraft , 2001, Eur. J. Control.

[27]  Alexandre Megretski,et al.  A cutting plane algorithm for robustness analysis of periodically time-varying systems , 2001, IEEE Trans. Autom. Control..