Close shock detection using time-frequency Prony modeling
暂无分享,去创建一个
[1] Francois Combet,et al. Recovery of a high shock probability process using blind deconvolution , 2002, 2002 11th European Signal Processing Conference.
[2] Raj Mittra,et al. A technique for extracting the poles and residues of a system directly from its transient response , 1975 .
[3] Christian Jutten,et al. Quasi-nonparametric blind inversion of Wiener systems , 2001, IEEE Trans. Signal Process..
[4] J. Lacoume,et al. Statistiques d'ordre supérieur pour le traitement du signal , 1997 .
[5] Yoram Bresler,et al. Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..
[6] B.H. Jansen,et al. Development and evaluation of the piecewise Prony method for evoked potential analysis , 2000, IEEE Transactions on Biomedical Engineering.
[7] Joe H. Chow,et al. Performance comparison of three identification methods for the analysis of electromechanical oscillations , 1999 .
[8] W. M. Carey,et al. Digital spectral analysis: with applications , 1986 .
[9] Nadine Martin,et al. Maximum likelihood noise estimation for spectrogram segmentation control , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[10] Eric E. Ungar,et al. Mechanical Vibration Analysis and Computation , 1989 .
[11] R. Kumaresan. On the zeros of the linear prediction-error filter for deterministic signals , 1983 .
[12] Arye Nehorai,et al. Enhancement of sinusoids in colored noise and the whitening performance of exact least-squares predictors , 1981, ICASSP.
[13] Stéphane Yvetot. Analyse de Prony multi-modèle de signaux transitoires : application aux signaux générés par l'impulsion électromagnétique d'origine nucléaire , 1996 .
[14] Matthieu Durnerin. Une stratégie pour l'interprétation en analyse spectrale. Détection et caractérisation des composantes d'un spectre. (A strategy for interpretation in spectral analysis) , 1999 .
[15] Corinne Mailhes,et al. L'analyse de Prony multi-modèle et multi-date de signaux transitoires , 1993 .
[16] B. Hunt. A theorem on the difficulty of numerical deconvolution , 1972 .
[17] T. Henderson,et al. Geometric methods for determining system poles from transient response , 1981 .
[18] J. Zeidler,et al. Maximum entropy spectral analysis of multiple sinusoids in noise , 1978 .
[19] D. Brillinger. Time Series: Data Analysis and Theory , 1981 .
[20] R. Kumaresan,et al. Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .
[21] Matthieu Durnerin,et al. Une strategie pour l'interpretation en analyse spectrale. Detection et caracterisation des composantes d'un spectre. - these realisee dans le cadre de l'operation aspect du gdr-prc isis - , 1999 .
[22] E Henriot,et al. Cours de physique générale , 1942 .
[23] Nicolas H. Younan,et al. Estimating the model parameters of deep-level transient spectroscopy data using a combined wavelet/singular value decomposition Prony method , 2001 .
[24] T. Söderström,et al. The Steiglitz-McBride identification algorithm revisited--Convergence analysis and accuracy aspects , 1981 .
[25] Thierry Robert. Modélisation continue de signaux non-stationnaires à ruptures brutales , 1996 .
[26] W. Huggins,et al. Best least-squares representation of signals by exponentials , 1968 .
[27] Arye Nehorai,et al. Enhancement of sinusoids in colored noise and the whitening performance of exact least squares predictors , 1982 .
[28] Mangui Liang,et al. A new model of LPC excitation , 1991, China., 1991 International Conference on Circuits and Systems.
[29] Ramdas Kumaresan,et al. An algorithm for pole-zero modeling and spectral analysis , 1986, IEEE Trans. Acoust. Speech Signal Process..
[30] Analyse Spectrale , 1979 .
[31] Chrysostomos L. Nikias,et al. Parameter estimation of exponentially damped sinusoids using higher order statistics , 1990, IEEE Trans. Acoust. Speech Signal Process..
[32] Gene H. Golub,et al. Matrix computations , 1983 .
[33] Hideaki Sakai. Estimation of frequencies of sinusoids in colored noise , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.
[34] Asoke K. Nandi,et al. BLIND DECONVOLUTION OF IMPACTING SIGNALS USING HIGHER-ORDER STATISTICS , 1998 .
[35] Arnab K. Shaw. A decoupled approach for optimal estimation of transfer function parameters from input-output data , 1994, IEEE Trans. Signal Process..
[36] Krishna Naishadham,et al. ARMA-based time-signature estimator for analyzing resonant structures by the FDTD method , 2001 .
[37] L. Mcbride,et al. A technique for the identification of linear systems , 1965 .
[38] J. Bass. Cours de mathématiques , 1959 .