Close shock detection using time-frequency Prony modeling

Abstract In many cases, modeling a mechanical process may require a good understanding of signals issued from the system, as vibration accelerations. This is particularly the case when shocks are responsible for the vibrations. In the case of critical systems, each shock induces natural modes excitation with damped sines amplitudes. Identification of the shocks (occurring instants and induced vibrations) is a very important step of the analysis. However, when successive shocks are very close, their separation and their individual identification are not easy. In this paper, we adapt the well-known stationary Prony model to this non-stationary context. We propose a method where shock instants detection and parameter shocks estimation are separated. We illustrate the performances of the method on COR curves. In a last part, we apply it to a real acceleration signal recorded on a chairlift running over a compression tower in a rope transport plant where 48 shocks are expected, some of them separated by only a few milliseconds.

[1]  Francois Combet,et al.  Recovery of a high shock probability process using blind deconvolution , 2002, 2002 11th European Signal Processing Conference.

[2]  Raj Mittra,et al.  A technique for extracting the poles and residues of a system directly from its transient response , 1975 .

[3]  Christian Jutten,et al.  Quasi-nonparametric blind inversion of Wiener systems , 2001, IEEE Trans. Signal Process..

[4]  J. Lacoume,et al.  Statistiques d'ordre supérieur pour le traitement du signal , 1997 .

[5]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[6]  B.H. Jansen,et al.  Development and evaluation of the piecewise Prony method for evoked potential analysis , 2000, IEEE Transactions on Biomedical Engineering.

[7]  Joe H. Chow,et al.  Performance comparison of three identification methods for the analysis of electromechanical oscillations , 1999 .

[8]  W. M. Carey,et al.  Digital spectral analysis: with applications , 1986 .

[9]  Nadine Martin,et al.  Maximum likelihood noise estimation for spectrogram segmentation control , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[10]  Eric E. Ungar,et al.  Mechanical Vibration Analysis and Computation , 1989 .

[11]  R. Kumaresan On the zeros of the linear prediction-error filter for deterministic signals , 1983 .

[12]  Arye Nehorai,et al.  Enhancement of sinusoids in colored noise and the whitening performance of exact least-squares predictors , 1981, ICASSP.

[13]  Stéphane Yvetot Analyse de Prony multi-modèle de signaux transitoires : application aux signaux générés par l'impulsion électromagnétique d'origine nucléaire , 1996 .

[14]  Matthieu Durnerin Une stratégie pour l'interprétation en analyse spectrale. Détection et caractérisation des composantes d'un spectre. (A strategy for interpretation in spectral analysis) , 1999 .

[15]  Corinne Mailhes,et al.  L'analyse de Prony multi-modèle et multi-date de signaux transitoires , 1993 .

[16]  B. Hunt A theorem on the difficulty of numerical deconvolution , 1972 .

[17]  T. Henderson,et al.  Geometric methods for determining system poles from transient response , 1981 .

[18]  J. Zeidler,et al.  Maximum entropy spectral analysis of multiple sinusoids in noise , 1978 .

[19]  D. Brillinger Time Series: Data Analysis and Theory. , 1981 .

[20]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[21]  Matthieu Durnerin,et al.  Une strategie pour l'interpretation en analyse spectrale. Detection et caracterisation des composantes d'un spectre. - these realisee dans le cadre de l'operation aspect du gdr-prc isis - , 1999 .

[22]  E Henriot,et al.  Cours de physique générale , 1942 .

[23]  Nicolas H. Younan,et al.  Estimating the model parameters of deep-level transient spectroscopy data using a combined wavelet/singular value decomposition Prony method , 2001 .

[24]  T. Söderström,et al.  The Steiglitz-McBride identification algorithm revisited--Convergence analysis and accuracy aspects , 1981 .

[25]  Thierry Robert Modélisation continue de signaux non-stationnaires à ruptures brutales , 1996 .

[26]  W. Huggins,et al.  Best least-squares representation of signals by exponentials , 1968 .

[27]  Arye Nehorai,et al.  Enhancement of sinusoids in colored noise and the whitening performance of exact least squares predictors , 1982 .

[28]  Mangui Liang,et al.  A new model of LPC excitation , 1991, China., 1991 International Conference on Circuits and Systems.

[29]  Ramdas Kumaresan,et al.  An algorithm for pole-zero modeling and spectral analysis , 1986, IEEE Trans. Acoust. Speech Signal Process..

[30]  Analyse Spectrale , 1979 .

[31]  Chrysostomos L. Nikias,et al.  Parameter estimation of exponentially damped sinusoids using higher order statistics , 1990, IEEE Trans. Acoust. Speech Signal Process..

[32]  Gene H. Golub,et al.  Matrix computations , 1983 .

[33]  Hideaki Sakai Estimation of frequencies of sinusoids in colored noise , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[34]  Asoke K. Nandi,et al.  BLIND DECONVOLUTION OF IMPACTING SIGNALS USING HIGHER-ORDER STATISTICS , 1998 .

[35]  Arnab K. Shaw A decoupled approach for optimal estimation of transfer function parameters from input-output data , 1994, IEEE Trans. Signal Process..

[36]  Krishna Naishadham,et al.  ARMA-based time-signature estimator for analyzing resonant structures by the FDTD method , 2001 .

[37]  L. Mcbride,et al.  A technique for the identification of linear systems , 1965 .

[38]  J. Bass Cours de mathématiques , 1959 .