Sampling theorems in polar coordinates

We investigate the problem of representing an arbitrary class of real functions f(·) in terms of their sampled values along the radius r and at equal angular increments of the azimuthal angle θ. Two different bandwidth constraints on f(r,θ) are considered: Fourier and Hankel. The end result is two theorems which enable images to be reconstructed from their samples. The theorems have potential application in image storage, image encoding, and computer-aided tomography.