Riemann–Hilbert problems andN-soliton solutions for a coupled mKdV system

Abstract A 3  ×  3 matrix spectral problem is introduced and its associated AKNS integrable hierarchy with four components is generated. From this spectral problem, a kind of Riemann–Hilbert problems is formulated for a system of coupled mKdV equations in the resulting AKNS integrable hierarchy. N -soliton solutions to the coupled mKdV system are presented through a specific Riemann–Hilbert problem with an identity jump matrix.

[1]  Wen-Xiu Ma,et al.  Complexiton solutions of the Toda lattice equation , 2004 .

[2]  Ruguang Zhou,et al.  Adjoint Symmetry Constraints Leading to Binary Nonlinearization , 2002 .

[3]  J. Satsuma,et al.  Two‐dimensional lumps in nonlinear dispersive systems , 1979 .

[4]  Yue-long Xiao,et al.  A Riemann-Hilbert approach to the Harry-Dym equation on the line , 2014, 1406.6159.

[5]  X. Geng,et al.  Riemann–Hilbert approach and N-soliton solutions for a generalized Sasa–Satsuma equation , 2016 .

[6]  Wenxiu Ma Symmetry constraint of MKdV equations by binary nonlinearization , 1995 .

[7]  Franco Magri,et al.  A Simple model of the integrable Hamiltonian equation , 1978 .

[8]  B. Fuchssteiner,et al.  Integrable theory of the perturbation equations , 1996, solv-int/9604004.

[9]  S. Vongehr,et al.  Solitons , 2020, Encyclopedia of Continuum Mechanics.

[10]  Huanhe Dong,et al.  Generalised (2+1)-dimensional Super MKdV Hierarchy for Integrable Systems in Soliton Theory , 2015 .

[11]  Group theoretic interpretation of equations of Korteweg - de Vries type , 1980 .

[12]  Wenxiu Ma,et al.  Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.

[13]  Wen-Xiu Ma,et al.  Complexiton solutions to the Korteweg–de Vries equation , 2002 .

[14]  Tu Gui-Zhang,et al.  On Liouville integrability of zero-curvature equations and the Yang hierarchy , 1989 .

[15]  Wenxiu Ma,et al.  Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras , 2006 .

[16]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[17]  Maureen T. Carroll Geometry , 2017, MAlkahtani Mathematics.

[18]  Wen-Xiu Ma,et al.  Variational identities and applications to Hamiltonian structures of soliton equations , 2009 .

[19]  Valery S. Shchesnovich,et al.  General soliton matrices in the Riemann–Hilbert problem for integrable nonlinear equations , 2003, nlin/0306027.

[20]  E. Belokolos,et al.  Algebro-geometric approach to nonlinear integrable equations , 1994 .

[21]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[22]  Two kinds of new integrable decompositions of the mKdV equation , 2006 .

[23]  V. Shchesnovich Perturbation theory for nearly integrable multicomponent nonlinear PDEs , 2001, nlin/0110029.

[24]  Helge Holden,et al.  Soliton Equations and Their Algebro-Geometric Solutions: The AKNS Hierarchy , 2003 .

[25]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[26]  B. Yin,et al.  Generalized fractional supertrace identity for Hamiltonian structure of NLS–MKdV hierarchy with self-consistent sources , 2016 .

[27]  Wen-Xiu Ma,et al.  Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations , 2016 .

[28]  Wen-Xiu Ma,et al.  Semi-direct sums of Lie algebras and continuous integrable couplings , 2006, nlin/0603064.

[29]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[30]  E. Doktorov,et al.  A Dressing Method in Mathematical Physics , 2007 .

[31]  A. Fokas,et al.  The unified method: I. Nonlinearizable problems on the half-line , 2011, 1109.4935.

[32]  Lena Vogler,et al.  The Direct Method In Soliton Theory , 2016 .

[33]  V.,et al.  On the theory of two-dimensional stationary self-focusing of electromagnetic waves , 2011 .

[34]  Deng-Shan Wang,et al.  Integrable properties of the general coupled nonlinear Schrödinger equations , 2010 .

[35]  J. Nimmo,et al.  Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .

[36]  Xi-Xiang Xu,et al.  An integrable coupling hierarchy of the Mkdv_integrable systems, its Hamiltonian structure and corresponding nonisospectral integrable hierarchy , 2010, Appl. Math. Comput..

[37]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[38]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[39]  W. Ma Generalized Bilinear Differential Equations , 2012 .