Light meson physics from maximally twisted mass lattice QCD

We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for Nf = 2 mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and pseudo scalar masses in the range 280 ≲ mPS ≲ 650MeV we control the major systematic effects of our calculation. This enables us to confront our Nf = 2 data with SU(2) chiral perturbation theory and extract low energy constants of the effective chiral Lagrangian and derived quantities, such as the light quark mass.

[1]  C. Michael,et al.  Meson masses and decay constants from unquenched lattice QCD , 2009, 0906.4720.

[2]  Robert G. Edwards,et al.  The Chroma Software System for Lattice QCD , 2004 .

[3]  M. Lüscher Volume dependence of the energy spectrum in massive quantum field theories , 1986 .

[4]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[5]  Fitting correlated hadron mass spectrum data. , 1994, Physical review. D, Particles and fields.

[6]  K. Kanaya,et al.  Two-flavor QCD simulation with exact chiral symmetry , 2008 .

[7]  Y. Namekawa,et al.  Physical point simulation in 2 + 1 flavor lattice QCD , 2009, 0911.2561.

[8]  Michele Della Morte,et al.  Exploring the HMC trajectory-length dependence of autocorrelation times in lattice QCD , 2007, Comput. Phys. Commun..

[9]  G. Münster On the phase structure of twisted mass lattice QCD , 2004 .

[10]  G. Colangelo,et al.  pi pi scattering , 2001, hep-ph/0103088.

[11]  Dynamical twisted mass fermions with light quarks , 2007, hep-lat/0701012.

[12]  Carsten Urbach,et al.  Lattice QCD with two light Wilson quarks and maximally twisted mass , 2007, 0710.1517.

[13]  Heinrich Leutwyler,et al.  Chiral perturbation theory to one loop , 1984 .

[14]  K. Jansen,et al.  Low-lying baryon spectrum with two dynamical twisted mass fermions , 2009, 0910.2419.

[15]  Light dynamical fermions on the lattice: toward the chiral regime of QCD , 2006, hep-lat/0702014.

[16]  Michael Fitting correlated data. , 1993, Physical review. D, Particles and fields.

[17]  K. Jansen,et al.  Lattice spacing dependence of the first order phase transition for dynamical twisted mass fermions , 2005 .

[18]  Chris Michael,et al.  Dynamical twisted mass fermions with light quarks: simulation and analysis details , 2008, Comput. Phys. Commun..

[19]  E. Scholz Light hadron masses and decay constants , 2009, 0911.2191.

[20]  I. Montvay,et al.  Exploring the phase structure of lattice QCD with twisted mass quarks , 2004 .

[21]  U. Wolff,et al.  Scaling test of two-flavor O(a)-improved lattice QCD , 2008, 0804.3383.

[22]  Th. Lippert,et al.  Finite-Size Effects in Lattice QCD with Dynamical Wilson Fermions , 2005 .

[23]  R. Petronzio,et al.  QCD with light Wilson quarks on fine lattices (I): first experiences and physics results , 2006, hep-lat/0610059.

[24]  O(a(2)) cutoff effects in lattice Wilson fermion simulations , 2009, 0908.0451.

[25]  K. Jansen,et al.  The η′ meson from lattice QCD , 2008 .

[26]  C. Michael,et al.  A proposal for B-physics on current lattices , 2009, 0909.3187.

[27]  T. Lippert,et al.  Ab Initio Determination of Light Hadron Masses , 2008, Science.

[28]  K. Kanaya,et al.  SU(2) and SU(3) chiral perturbation theory analyses on baryon masses in 2+1 flavor lattice QCD , 2009, 0905.0962.

[29]  I. Montvay,et al.  The phase structure of lattice QCD with two flavors of Wilson quarks and renormalization group improved gluons , 2004, hep-lat/0410031.

[30]  Karl Jansen,et al.  HMC algorithm with multiple time scale integration and mass preconditioning , 2006, Comput. Phys. Commun..

[31]  Peter Weisz,et al.  Lattice QCD with a chirally twisted mass term , 2000 .

[32]  Scaling and low energy constants in lattice QCD with N_f=2 maximally twisted Wilson quarks , 2007, 0710.2498.

[33]  Chirally improving Wilson fermions 1. O(a) improvement , 2003, hep-lat/0306014.

[34]  I. Montvay,et al.  Light hadrons from lattice QCD with light (u, d), strange and charm dynamical quarks , 2010, 1004.5284.

[35]  Chirally improving Wilson fermions 2. Four-quark operators , 2004, hep-lat/0407002.

[36]  K. Jansen,et al.  Twisted mass quarks and the phase structure of lattice QCD , 2005 .

[37]  V. Lubicz,et al.  Renormalisation of quark bilinears with Nf=2 Wilson fermions and tree-level improved gauge action , 2007, 0710.0975.

[38]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[39]  S. Dürr,et al.  The pion mass in finite volume , 2003, hep-lat/0311023.

[40]  C. Michael,et al.  Light quark masses and pseudoscalar decay constants from Nf = 2 lattice QCD with twisted mass fermions , 2007, 0709.4574.

[41]  H. Leutwyler,et al.  Light Quarks at Low Temperatures , 1987 .

[42]  T. Yoshie,et al.  Making use of the International Lattice Data Grid , 2008, 0812.0849.

[43]  Scaling test for Wilson twisted mass QCD , 2003, hep-lat/0312013.

[44]  Reducing cutoff effects in maximally twisted LQCD close to the chiral limit , 2005, hep-lat/0503034.

[45]  K. Jansen,et al.  The epsilon regime of chiral perturbation theory with Wilson-type fermions , 2009, 0911.1931.

[46]  T. Kaneko,et al.  Convergence of the chiral expansion in two-flavor lattice QCD. , 2008, Physical review letters.

[47]  Karl Jansen,et al.  tmLQCD: A program suite to simulate Wilson twisted mass lattice QCD , 2009, Comput. Phys. Commun..

[48]  Quenched scaling of Wilson twisted mass fermions , 2005, hep-lat/0507010.

[49]  I. Montvay,et al.  First results of ETMC simulations with Nf=2+1+1 maximally twisted mass fermions , 2009, 0911.5244.

[50]  D. Toussaint,et al.  Nonperturbative QCD Simulations with 2+1 Flavors of Improved Staggered Quarks , 2009, 0903.3598.

[51]  G. Ecker,et al.  Chiral perturbation theory , 1995, hep-ph/9501357.

[52]  V. Lubicz,et al.  Electromagnetic form factor of the pion from twisted-mass lattice QCD at N f = 2 , 2008, 0812.4042.

[53]  R. Wohlert,et al.  Continuum limit improved lattice action for pure Yang-Mills theory (I)☆ , 1983 .

[54]  A general method for non-perturbative renormalization of lattice operators , 1994, hep-lat/9411010.

[55]  Heinrich Leutwyler,et al.  Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark , 1985 .

[56]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[57]  M. Lüscher,et al.  Volume dependence of the energy spectrum in massive quantum field theories , 1986 .

[58]  R. Sommer A new way to set the energy scale in lattice gauge theories and its application to the static force and σs in SU (2) Yang-Mills theory , 1994 .

[59]  Vincent Drach,et al.  Status of ETMC simulations with Nf=2+1+1 twisted mass fermions , 2008, 0810.3807.

[60]  K. Jansen,et al.  Twisted mass, overlap and Creutz fermions: Cut-off effects at tree-level of perturbation theory , 2008, 0802.3637.

[61]  P. B. Mackenzie,et al.  Constrained curve fitting , 2002 .

[62]  K. Jansen,et al.  Light baryon masses with dynamical twisted mass fermions , 2008 .

[63]  A. Retey,et al.  Renormalization and running of quark mass and field in the regularization invariant and schemes at three and four loops , 1999, hep-ph/9910332.

[64]  M. Fukugita,et al.  Light hadron spectroscopy with two flavors of O(a)-improved dynamical quarks , 2003 .

[65]  K. Jansen,et al.  Lattice QCD: a critical status report , 2008, 0810.5634.

[66]  K. Jansen,et al.  Pseudoscalar decay constants of kaon and D-mesons from N f = 2 twisted mass Lattice QCD , 2009, 0904.0954.