Quality costs and robustness criteria in chemical process design optimization

Abstract The identification and incorporation of quality costs and robustness criteria is becoming a critical issue while addressing chemical process design problems under uncertainty. This article presents a systematic design framework that includes Taguchi loss functions and other robustness criteria within a single-level stochastic optimization formulation, with expected values in the presence of uncertainty being estimated by an efficient cubature technique. The solution obtained defines an optimal design, together with a robust operating policy that maximizes average process performance. Two process engineering examples (synthesis and design of a separation system and design of a reactor and heat exchanger plant) illustrate the potential of the proposed design framework. Different quality cost models and robustness criteria are considered, and their influence in the nature and location of best designs systematically studied. This analysis reinforces the need for carefully considering/addressing process quality and robustness related criteria while performing chemical process plant design.

[1]  Efstratios N. Pistikopoulos,et al.  A parametric MINLP algorithm for process synthesis problems under uncertainty , 1996 .

[2]  E. Pistikopoulos,et al.  Novel approach for optimal process design under uncertainty , 1995 .

[3]  Efstratios N. Pistikopoulos,et al.  An optimization approach for process engineering problems under uncertainty , 1996 .

[4]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[5]  David M. Himmelblau,et al.  Integration of Flexibility and Control in Process Design , 1994 .

[6]  Efstratios N. Pistikopoulos,et al.  Uncertainty in process design and operations , 1995 .

[7]  E. Pistikopoulos,et al.  A multiparametric programming approach for linear process engineering problems under uncertainty , 1997 .

[8]  C. A. FLOUDAS,et al.  Operational planning under uncertainty , 1994 .

[9]  L. Biegler,et al.  Dynamic Optimization for Batch Design and Scheduling with Process Model Uncertainty , 1997 .

[10]  H. Engels,et al.  Numerical Quadrature and Cubature , 1980 .

[11]  Lazaros G. Papageorgiou,et al.  Robustness metrics for dynamic optimization models under parameter uncertainty , 1998 .

[12]  Ignacio E. Grossmann,et al.  Disjunctive multiperiod optimization methods for design and planning of chemical process systems , 1999 .

[13]  Efstratios N. Pistikopoulos,et al.  An integrated framework for robust and flexible process systems , 1999 .

[14]  Ignacio E. Grossmann,et al.  Optimal process design under uncertainty , 1983 .

[15]  Urmila M. Diwekar,et al.  An efficient sampling technique for off-line quality control , 1997 .

[16]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[17]  Fernando P. Bernardo,et al.  Robust optimization framework for process parameter and tolerance design , 1998 .

[18]  Shabbir Ahmed,et al.  Robust Process Planning under Uncertainty , 1998 .

[19]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[20]  Ignacio E. Grossmann,et al.  An outer-approximation method for multiperiod design optimization , 1992 .

[21]  Ignacio E. Grossmann,et al.  Design optimization of stochastic flexibility , 1993 .

[22]  G. McRae,et al.  Parametric optimization of MILP programs and a framework for the parametric optimization of MINLPs , 1998 .

[23]  Madhan Shridhar Phadke,et al.  Quality Engineering Using Robust Design , 1989 .

[24]  David A. Kendrick,et al.  GAMS : a user's guide, Release 2.25 , 1992 .

[25]  Pedro Manuel Tavares Lopes Andrade Saraiva Data-driven learning frameworks for continuous process analysis and improvement , 1993 .

[26]  U. Diwekar,et al.  Efficient sampling technique for optimization under uncertainty , 1997 .

[27]  Fernando P. Bernardo,et al.  Integration and Computational Issues in Stochastic Design and Planning Optimization Problems , 1999 .

[28]  Ignacio E. Grossmann,et al.  Integrated stochastic metric of flexibility for systems with discrete state and continuous parameter uncertainties , 1990 .

[29]  Ignacio E. Grossmann,et al.  Optimum design of chemical plants with uncertain parameters , 1978 .

[30]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[31]  Terje Hertzberg,et al.  Estimation of uncertainty in dynamic simulation results , 1997 .

[32]  Efstratios N. Pistikopoulos,et al.  A novel flexibility analysis approach for processes with stochastic parameters , 1990 .

[33]  Ignacio E. Grossmann,et al.  Optimization strategies for flexible chemical processes , 1983 .

[34]  Edward S. Rubin,et al.  Parameter design methodology for chemical processes using a simulator , 1994 .