Development of a genetic system for a purple sulfur bacterium: Conjugative plasmid transfer inChromatium vinosum

[1]  Roar L. Irgens,et al.  Thioacetamide as a source of hydrogen sulfide for colony growth of purple sulfur bacteria , 1983, Current Microbiology.

[2]  N. Pfennig,et al.  Capacity of chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum , 1980, Archives of Microbiology.

[3]  J. Wall,et al.  Characterization of Rhodopseudomonas capsulata , 1975, Archives of Microbiology.

[4]  R. Guerrero,et al.  Chromosome map of the phototrophic anoxygenic bacterium Chromatium vinosum , 1995 .

[5]  R. Overbeek,et al.  The winds of (evolutionary) change: breathing new life into microbiology. , 1996, Journal of bacteriology.

[6]  R. Guerrero,et al.  Susceptibility of various purple and green sulfur bacteria to different antimicrobial agents. , 1994, FEMS microbiology letters.

[7]  Christopher M Thomas,et al.  Complete Nucleotide Sequence of Birmingham IncPα Plasmids: Compilation and Comparative Analysis , 1994 .

[8]  J. Klemme,et al.  Increased Nitrogenase-Dependent H2 Photoproduction by hup Mutants of Rhodospirillum rubrum , 1994, Applied and environmental microbiology.

[9]  K. Kovács,et al.  Cloning and sequence of the structural (hupSLC) and accessory (hupDHI) genes for hydrogenase biosynthesis in Thiocapsa roseopersicina. , 1994, Gene.

[10]  P. Heisig High-level fluoroquinolone resistance in a Salmonella typhimurium isolate due to alterations in both gyrA and gyrB genes. , 1993, The Journal of antimicrobial chemotherapy.

[11]  J. V. Van Beeumen,et al.  Nucleotide sequence of the heme subunit of flavocytochrome c from the purple phototrophic bacterium, Chromatium vinosum. A 2.6-kilobase pair DNA fragment contains two multiheme cytochromes, a flavoprotein, and a homolog of human ankyrin. , 1993, The Journal of biological chemistry.

[12]  J. Willison Biochemical genetics revisited: the use of mutants to study carbon and nitrogen metabolism in the photosynthetic bacteria. , 1993, FEMS microbiology reviews.

[13]  U. Pieper,et al.  Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. , 1992, FEMS microbiology reviews.

[14]  N. Pfennig,et al.  The Family Chromatiaceae , 1992 .

[15]  C. Hunter,et al.  Genetic Manipulation of Photosynthetic Prokaryotes , 1992 .

[16]  P. Heisig,et al.  Use of a broad-host-range gyrA plasmid for genetic characterization of fluoroquinolone-resistant gram-negative bacteria , 1991, Antimicrobial Agents and Chemotherapy.

[17]  S. Henikoff,et al.  rbcR [correction of rcbR], a gene coding for a member of the LysR family of transcriptional regulators, is located upstream of the expressed set of ribulose 1,5-bisphosphate carboxylase/oxygenase genes in the photosynthetic bacterium Chromatium vinosum , 1991, Journal of bacteriology.

[18]  T. Donohue,et al.  [22] Genetic techniques in rhodospirillaceae , 1991 .

[19]  T. Donohue,et al.  Genetic techniques in rhodospirillaceae. , 1991, Methods in enzymology.

[20]  N. Pace,et al.  Complementation of an RNase P RNA (rnpB) gene deletion in Escherichia coli by homologous genes from distantly related eubacteria , 1990, Journal of bacteriology.

[21]  H. Schwab,et al.  Partitioning of broad-host-range plasmid RP4 is a complex system involving site-specific recombination , 1990, Journal of bacteriology.

[22]  H. Schwab,et al.  Partitioning ofBroad-Host-Range Plasmid RP4Isa Complex SystemInvolving Site-Specific Recombinationt , 1990 .

[23]  D. Oesterhelt,et al.  Gene transfer system for Rhodopseudomonas viridis , 1989, Journal of bacteriology.

[24]  A. Viale,et al.  Expressed genes for plant-type ribulose 1,5-bisphosphate carboxylase/oxygenase in the photosynthetic bacterium Chromatium vinosum, which possesses two complete sets of the genes , 1989, Journal of bacteriology.

[25]  A. Pühler,et al.  Identification and mapping of nitrogen fixation genes of Rhodobacter capsulatus: duplication of a nifA-nifB region , 1988, Journal of bacteriology.

[26]  B. Masepohl,et al.  Identification andMapping ofNitrogen Fixation Genesof Rhodobacter capsulatus: Duplication ofanifA-nifB Region , 1988 .

[27]  Christopher M Thomas,et al.  Incompatibility group P plasmids: genetics, evolution, and use in genetic manipulation. , 1987, Annual review of microbiology.

[28]  M. Madigan Chromatium tepidum sp. nov. a Thermophilic Photosynthetic Bacterium of the Family Chromatiaceae , 1986 .

[29]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[30]  S. Cohen,et al.  Alignment of genetic and restriction maps of the photosynthesis region of the Rhodopseudomonas capsulata chromosome by a conjugation-mediated marker rescue technique , 1983, Journal of bacteriology.

[31]  A. Pühler,et al.  A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria , 1983, Bio/Technology.

[32]  J. M. Pemberton,et al.  Conjugation and chromosome transfer in Rhodopseudomonas sphaeroides mediated by W and P group plasmids , 1979 .

[33]  F. Bolivar,et al.  Plasmids of Escherichia coli as cloning vectors. , 1979, Methods in enzymology.

[34]  T. Eckhardt,et al.  A rapid method for the identification of plasmid desoxyribonucleic acid in bacteria. , 1978, Plasmid.

[35]  W. R. Sistrom Transfer of Chromosomal Genes Mediated by Plasmid R68.45 in Rhodopseudomonas sphaeroides , 1977, Journal of bacteriology.

[36]  N. Pfennig,et al.  Type and Neotype Strains of the Species of Phototrophic Bacteria Maintained in Pure Culture , 1971 .

[37]  R. Sykes,et al.  Properties of an R factor from Pseudomonas aeruginosa. , 1971, Journal of bacteriology.

[38]  D. Helinski,et al.  Circular DNA forms of colicinogenic factors E1, E2 and E3 from Escherichia coli. , 1968, Journal of molecular biology.

[39]  Y. Suyama,et al.  Satellite DNA in photosynthetic bacteria. , 1966, Biochemical and biophysical research communications.