Anterior prefrontal cortex contributions to attention control.

In a series of event-related functional magnetic resonance studies, we consistently found activation in anterior prefrontal cortex related to visual dimension changes in singleton search tasks. I review these data and discuss possible contributions of anterior prefrontal cortex to attention control in visual search. It is proposed that anterior prefrontal cortex may detect task-relevant stimulus changes when the target is ambiguously defined. This process may occur in the absence of awareness and may support visual dimension weighting by inhibition of the old relevant dimension in favor of the new dimension.

[1]  Stefan Pollmann,et al.  Left and right occipital cortices differ in their response to spatial cueing , 2003, NeuroImage.

[2]  Anthony D Wagner,et al.  Executive Control during Episodic Retrieval Multiple Prefrontal Processes Subserve Source Memory , 2002, Neuron.

[3]  C. Frith,et al.  Brain regions involved in prospective memory as determined by positron emission tomography , 2001, Neuropsychologia.

[4]  Frederik Barkhof,et al.  Frontostriatal system in planning complexity: a parametric functional magnetic resonance version of tower of london task , 2003, NeuroImage.

[5]  J. Gabrieli,et al.  The frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex , 2000, Psychobiology.

[6]  E. Koechlin,et al.  The Architecture of Cognitive Control in the Human Prefrontal Cortex , 2003, Science.

[7]  S. Pollmann,et al.  A Fronto-Posterior Network Involved in Visual Dimension Changes , 2000, Journal of Cognitive Neuroscience.

[8]  Stefan Pollmann,et al.  Switching between Dimensions, Locations, and Responses: The Role of the Left Frontopolar Cortex , 2001, NeuroImage.

[9]  H. Fukuyama,et al.  Dissociable mechanisms of attentional control within the human prefrontal cortex. , 2001, Cerebral cortex.

[10]  A. Dove,et al.  Prefrontal cortex activation in task switching: an event-related fMRI study. , 2000, Brain research. Cognitive brain research.

[11]  D. A. Grant,et al.  A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. , 1948, Journal of experimental psychology.

[12]  T. Robbins,et al.  Contrasting Cortical and Subcortical Activations Produced by Attentional-Set Shifting and Reversal Learning in Humans , 2000, Journal of Cognitive Neuroscience.

[13]  Hermann J. Müller,et al.  Selective and interactive neural correlates of visual dimension changes and response changes , 2006, NeuroImage.

[14]  M. Brass,et al.  The role of the frontal cortex in task preparation. , 2002, Cerebral cortex.

[15]  J. Jonides,et al.  Storage and executive processes in the frontal lobes. , 1999, Science.

[16]  John C Gore,et al.  An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. , 2002, Brain research. Cognitive brain research.

[17]  M. Rugg,et al.  Retrieval processing and episodic memory , 2000, Trends in Cognitive Sciences.

[18]  H J Müller,et al.  Top-down controlled visual dimension weighting: an event-related fMRI study. , 2002, Cerebral cortex.

[19]  J. Grafman,et al.  A study of the performance of patients with frontal lobe lesions in a financial planning task. , 1997, Brain : a journal of neurology.

[20]  T. Shallice,et al.  The cognitive and neuroanatomical correlates of multitasking , 2000, Neuropsychologia.

[21]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[22]  R. J. Dolan,et al.  Functional Magnetic Resonance Imaging of Proactive Interference during Spoken Cued Recall , 2002, NeuroImage.

[23]  H. Müller,et al.  Searching for unknown feature targets on more than one dimension: Investigating a “dimension-weighting” account , 1996, Perception & psychophysics.

[24]  John D E Gabrieli,et al.  Evaluating self-generated information: anterior prefrontal contributions to human cognition. , 2003, Behavioral neuroscience.

[25]  M. D’Esposito,et al.  Functional MRI studies of spatial and nonspatial working memory. , 1998, Brain research. Cognitive brain research.

[26]  T. Braver,et al.  Anterior cingulate cortex and response conflict: effects of response modality and processing domain. , 2001, Cerebral Cortex.

[27]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[28]  K. A. Hadland,et al.  Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. , 2002, Journal of neurophysiology.

[29]  T. Robbins,et al.  Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson's disease. , 1993, Brain : a journal of neurology.

[30]  E. Koechlin,et al.  The role of the anterior prefrontal cortex in human cognition , 1999, Nature.

[31]  S. Pollmann,et al.  Object working memory and visuospatial processing: functional neuroanatomy analyzed by event-related fMRI , 2000, Experimental Brain Research.

[32]  D. V. von Cramon,et al.  Localization of Executive Functions in Dual-Task Performance with fMRI , 2002, Journal of Cognitive Neuroscience.

[33]  M. Milham,et al.  Competition for priority in processing increases prefrontal cortex's involvement in top-down control: an event-related fMRI study of the stroop task. , 2003, Brain research. Cognitive brain research.

[34]  Joel R. Meyer,et al.  A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. , 1999, Brain : a journal of neurology.

[35]  Y. Miyashita,et al.  Transient Activation of Superior Prefrontal Cortex during Inhibition of Cognitive Set , 2003, The Journal of Neuroscience.

[36]  S. Pollmann,et al.  Covert Reorienting and Inhibition of Return: An Event-Related fMRI Study , 2002, Journal of Cognitive Neuroscience.

[37]  H J Müller,et al.  Visual search for singleton feature targets within and across feature dimensions , 1995, Perception & psychophysics.

[38]  James K. Kroger,et al.  Rostrolateral Prefrontal Cortex Involvement in Relational Integration during Reasoning , 2001, NeuroImage.

[39]  S. Yantis,et al.  Transient neural activity in human parietal cortex during spatial attention shifts , 2002, Nature Neuroscience.

[40]  F. J. Friedrich,et al.  Effects of parietal injury on covert orienting of attention , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.