New Lower Bounds for Convex Hull Problems in Odd Dimensions

We show that in the worst case, $\Omega(n^{\ceil{d/2}-1} + n\log n)$ sidedness queries are required to determine whether the convex hull of n points in $\Real^d$ is simplicial or to determine the number of convex hull facets. This lower bound matches known upper bounds in any odd dimension. Our result follows from a straightforward adversary argument. A key step in the proof is the construction of a quasi-simplicial n-vertex polytope with $\Omega(n^{\ceil{d/2}-1})$ degenerate facets. While it has been known for several years that d-dimensional convex hulls can have $\Omega(n^{\floor{d/2}})$ facets, the previously best lower bound for these problems is only $\Omega(n\log n)$. Using similar techniques, we also obtain simple and correct proofs of Erickson and Seidel's lower bounds for detecting affine degeneracies in arbitrary dimensions and circular degeneracies in the plane. As a related result, we show that detecting simplicial convex hulls in $\Real^d$ is $\ceil{d/2}$\SUM-hard in the sense of Gajentaan and Overmars.

[1]  Timothy M. Chan Output-sensitive results on convex hulls, extreme points, and related problems , 1996, Discret. Comput. Geom..

[2]  Otfried Cheong,et al.  On ray shooting in convex polytopes , 1993, Discret. Comput. Geom..

[3]  Bernard Chazelle,et al.  Derandomizing an Output-sensitive Convex Hull Algorithm in Three Dimensions , 1995, Comput. Geom..

[4]  Jeff Erickson,et al.  Lower bounds for linear satisfiability problems , 1995, SODA '95.

[5]  Raimund Seidel,et al.  How Good Are Convex Hull Algorithms? , 1997, Comput. Geom..

[6]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[7]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[8]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[9]  Nina Amenta,et al.  Shadows and slices of polytopes , 1996, SCG '96.

[10]  Stephen A. Bloch,et al.  How hard are n2-hard problems? , 1994, SIGA.

[11]  I. Schur,et al.  Ueber eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen , 1901 .

[12]  GARRET SWART,et al.  Finding the Convex Hull Facet by Facet , 1985, J. Algorithms.

[13]  Raimund Seidel,et al.  Erratum to Better Lower Bounds on Detecting Affine and Spherical Degeneracies , 1993, Discret. Comput. Geom..

[14]  Donald R. Chand,et al.  An Algorithm for Convex Polytopes , 1970, JACM.

[15]  Raimund Seidel,et al.  Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..

[16]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[17]  Bernard Chazelle,et al.  An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..

[18]  Jeff Erickson,et al.  New lower bounds for convex hull problems in odd dimensions , 1996, SCG '96.

[19]  M. E. Dyer,et al.  The Complexity of Vertex Enumeration Methods , 1983, Math. Oper. Res..

[20]  Raimund Seidel,et al.  Better lower bounds on detecting affine and spherical degeneracies , 1995, Discret. Comput. Geom..

[21]  Timothy M. Chan Optimal output-sensitive convex hull algorithms in two and three dimensions , 1996, Discret. Comput. Geom..

[22]  R. Seidel A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions , 1981 .

[23]  Katta G. Murty,et al.  Some NP-complete problems in linear programming , 1982, Oper. Res. Lett..

[24]  Jirí Matousek,et al.  Linear optimization queries , 1992, SCG '92.

[25]  Andrew Chi-Chih Yao,et al.  A Lower Bound to Finding Convex Hulls , 1981, JACM.

[26]  R. Seidel A Method for Proving Lower Bounds for Certain Geometric Problems , 1984 .

[27]  Z. Füredi,et al.  Arrangements of lines with a large number of triangles , 1984 .

[28]  Raimund Seidel,et al.  Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.

[29]  David G. Kirkpatrick,et al.  The Ultimate Planar Convex Hull Algorithm? , 1986, SIAM J. Comput..

[30]  George B. Purdy,et al.  Two combinatorial problems in the plane , 1995, Discret. Comput. Geom..

[31]  N. Sloane,et al.  The orchard problem , 1974 .

[32]  Kenneth L. Clarkson More output-sensitive geometric algorithms , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[33]  Günter Rote Degenerate convex hulls in high dimensions without extra storage , 1992, SCG '92.

[34]  F. P. Preparata,et al.  Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.

[35]  B. Grünbaum Arrangements and Spreads , 1972 .

[36]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .