Decision making in xia2

The basis for decision making in the program xia2 is described, alongside the framework to support these protocols. Where appropriate, applications of these protocols to interactive data processing are highlighted.

[1]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[2]  Tom Alber,et al.  Automated protein crystal structure determination using ELVES. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Randy J. Read,et al.  Evolving Methods for Macromolecular Crystallography , 2007 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Michael G. Rossmann,et al.  An Algorithm for Automatic Indexing of Oscillation Images using Fourier Analysis , 1997 .

[6]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[7]  Bernhard Rupp,et al.  Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein–nucleic acid complex crystals , 2003, Protein science : a publication of the Protein Society.

[8]  M. Weiss,et al.  On the use of the merging R factor as a quality indicator for X-ray data , 1997 .

[9]  Graeme Winter,et al.  xia2: an expert system for macromolecular crystallography data reduction , 2010 .

[10]  Nicholas K. Sauter,et al.  Robust indexing for automatic data collection , 2004, Journal of applied crystallography.

[11]  P. Evans,et al.  Scaling and assessment of data quality. , 2006, Acta crystallographica. Section D, Biological crystallography.

[12]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[13]  S. French,et al.  On the treatment of negative intensity observations , 1978 .

[14]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[15]  Z Dauter,et al.  Data-collection strategies. , 1999, Acta crystallographica. Section D, Biological crystallography.

[16]  H R Powell,et al.  The Rossmann Fourier autoindexing algorithm in MOSFLM. , 1999, Acta crystallographica. Section D, Biological crystallography.

[17]  Y. Le Page,et al.  The derivation of the axes of the conventional unit cell from the dimensions of the Buerger‐reduced cell , 1982 .

[18]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[19]  P. Howell,et al.  Identification of heavy‐atom derivatives by normal probability methods , 1992 .

[20]  P D Adams,et al.  Numerically stable algorithms for the computation of reduced unit cells. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[21]  Simon J. Cox Proceedings of the UK e-science All Hands Meeting , 2007 .

[22]  D Spruce,et al.  Automation of the collection and processing of X-ray diffraction data -- a generic approach. , 2002, Acta crystallographica. Section D, Biological crystallography.

[23]  A. Wilson,et al.  Determination of Absolute from Relative X-Ray Intensity Data , 1942, Nature.

[24]  Nicholas K. Sauter,et al.  The Computational Crystallography Toolbox: crystallographic algorithms in a reusable software framework , 2002 .

[25]  Owen Johnson,et al.  iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM , 2011, Acta crystallographica. Section D, Biological crystallography.

[26]  Clemens Vonrhein,et al.  Data processing and analysis with the autoPROC toolbox , 2011, Acta crystallographica. Section D, Biological crystallography.