SAGE: A Hybrid Geopolitical Event Forecasting System

Forecasting of geopolitical events is a notoriously difficult task, with experts failing to significantly outperform a random baseline across many types of forecasting events. One successful way to increase the performance of forecasting tasks is to turn to crowdsourcing: leveraging many forecasts from non-expert users. Simultaneously, advances in machine learning have led to models that can produce reasonable, although not perfect, forecasts for many tasks. Recent efforts have shown that forecasts can be further improved by “hybridizing” human forecasters: pairing them with the machine models in an effort to combine the unique advantages of both. In this demonstration, we present Synergistic Anticipation of Geopolitical Events (SAGE), a platform for human/computer interaction that facilitates human reasoning with machine models.