Always convergent iteration methods for nonlinear equations of Lipschitz functions

We define a class of always convergent methods for solving nonlinear equations of real Lipschitz functions. These methods generate monotone iterations that either converge to the nearest zero, if exists or leave the interval in a finite number of steps. We also investigate the speed and relative speed of these methods and show that no optimal method exists in the class. After deriving special cases we report on numerical testing that show the feasibility of these methods.

[1]  Y. Sergeyev Finding the Minimal Root of an Equation , 2006 .

[2]  N. L. Carothers Real Analysis: Preface , 2000 .

[3]  I. P. Natanson,et al.  Theory of Functions of a Real Variable , 1955 .

[4]  Alain Piétrus A globally convergent method for solving nonlinear equations without the differentiability condition , 2005, Numerical Algorithms.

[5]  J. Abaffy An always convergent algorithm for global minimization of univariate Lipschitz functions , 2013 .

[6]  D. Le,et al.  An efficient derivative-free method for solving nonlinear equations , 1985, TOMS.

[7]  M. Kuczma Functional equations in a single variable , 1968 .

[8]  J. Delahaye,et al.  Sequence Transformations , 1988 .

[9]  Christopher A. Sikorski Optimal solution of nonlinear equations , 1985, J. Complex..

[10]  Florian A. Potra,et al.  Some efficient methods for enclosing simple zeros of nonlinear equations , 1992 .

[11]  Y. Sergeyev,et al.  Univariate geometric Lipschitz global optimization algorithms , 2012 .

[12]  Aurél Galántai,et al.  A new method for minimization of real Lipschitz functions , 2013, 2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI).

[13]  Jochen W. Schmidt Eingrenzung von Lösungen nichtlinearer Gleichungen durch Verfahren mit höherer Konvergenzgeschwindigkeit , 2005, Computing.

[14]  John R. Rice,et al.  Numerical methods, software, and analysis , 1983 .

[15]  T. J. Dekker,et al.  Two Efficient Algorithms with Guaranteed Convergence for Finding a Zero of a Function , 1975, TOMS.

[16]  György Targonski,et al.  Topics in Iteration Theory , 1981 .

[17]  F. Forgo,et al.  Globally convergent algorithm for solving nonlinear equations , 1993 .

[18]  Aurél Galántai,et al.  A study of accelerated Newton methods for multiple polynomial roots , 2010, Numerical Algorithms.

[19]  M. Kuczma,et al.  Iterative Functional Equations , 1990 .

[20]  Yixun Shi,et al.  Algorithm 748: enclosing zeros of continuous functions , 1995, TOMS.

[21]  Florian A. Potra,et al.  On enclosing simple roots of nonlinear equations , 1993 .