Fairness, Distances and Degrees

We show the identity between sets of fair computations in recursive transition graphs, sets of cluster points of finite computations for Π01 ultra-metrics refining the Baire metrics, and Π03 subsets of ωω. The results are applied to recursive marked trees, fairness definitions, ω-regular languages, and Π03 sets.

[1]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[2]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[3]  Robert M. Keller,et al.  Formal verification of parallel programs , 1976, CACM.

[4]  Ugo Montanari,et al.  Liveness properties as convergence in metric spaces , 1984, STOC '84.

[5]  John-Jules Ch. Meyer,et al.  Order and metric in the stream semantics of elemental concurrency , 1987, Acta Informatica.

[6]  Gérard Boudol,et al.  Algèbre de Processus et Synchronisation , 1984, Theor. Comput. Sci..

[7]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[8]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[9]  Y. Moschovakis Descriptive Set Theory , 1980 .

[10]  Maurice Nivat,et al.  Metric Interpretations of Infinite Trees and Semantics of non Deterministic Recursive Programs , 1980, Theor. Comput. Sci..

[11]  David Harel,et al.  Effective transformations on infinite trees, with applications to high undecidability, dominoes, and fairness , 1986, JACM.

[12]  Gerardo Costa,et al.  A Metric Characterization of Fair Computations in CCS , 1985, TAPSOFT, Vol.1.

[13]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[14]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.