Horizontal gene transfer accelerates genome innovation and evolution.

Horizontal gene transfer (HGT) spreads genetic diversity by moving genes across species boundaries. By rapidly introducing newly evolved genes into existing genomes, HGT circumvents the slow step of ab initio gene creation and accelerates genome innovation. However, HGT can only affect organisms that readily exchange genes (exchange communities). In order to define exchange communities and understand the internal and external environmental factors that regulate HGT, we analyzed approximately 20,000 genes contained in eight free-living prokaryotic genomes. These analyses indicate that HGT occurs among organisms that share similar factors. The most significant are genome size, genome G/C composition, carbon utilization, and oxygen tolerance.

[1]  M. Steel,et al.  Subtree Transfer Operations and Their Induced Metrics on Evolutionary Trees , 2001 .

[2]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[3]  T. Thomas,et al.  Effect of Temperature on Stability and Activity of Elongation Factor 2 Proteins from Antarctic and Thermophilic Methanogens , 2000, Journal of bacteriology.

[4]  J. Davison,et al.  Genetic exchange between bacteria in the environment. , 1999, Plasmid.

[5]  S. Falkow,et al.  Genomic clues for defining bacterial pathogenicity. , 1999, Microbes and infection.

[6]  J. Lake,et al.  Horizontal gene transfer among genomes: the complexity hypothesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[7]  W. Martin Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[8]  J. Lake,et al.  Optimally recovering rate variation information from genomes and sequences: pattern filtering. , 1998, Molecular biology and evolution.

[9]  W. Whitman,et al.  Prokaryotes: the unseen majority. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Lake,et al.  Genomic evidence for two functionally distinct gene classes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Huber,et al.  The complete genome of the hyperthermophilic bacterium Aquifex aeolicus , 1998, Nature.

[12]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[13]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[14]  G. Church,et al.  Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics , 1997, Journal of bacteriology.

[15]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[16]  M. Ghirardi,et al.  Oxygen sensitivity of algal H2- production , 1997 .

[17]  Howard Ochman,et al.  Pathogenicity Islands: Bacterial Evolution in Quantum Leaps , 1996, Cell.

[18]  R. Fleischmann,et al.  Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii , 1996, Science.

[19]  J. Fry,et al.  Natural transformation in river epilithon , 1996, Applied and environmental microbiology.

[20]  P. Piper,et al.  Complementation of a pgk deletion mutation in Saccharomyces cerevisiae with expression of the phosphoglycerate-kinase gene from the hyperthermophilic Archaeon Sulfolobus solfataricus , 1996, Current Genetics.

[21]  F. Eiserling,et al.  DNA Enzymology above 100 °C. , 1995, The Journal of Biological Chemistry.

[22]  M. G. Lorenz,et al.  Bacterial gene transfer by natural genetic transformation in the environment. , 1994, Microbiological reviews.

[23]  L. Sherman,et al.  Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142 , 1994, Journal of bacteriology.

[24]  J. Lake,et al.  Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. G. Kidwell,et al.  Horizontal transfer , 1992, Current Biology.

[26]  B. Spratt,et al.  Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species , 1992, Journal of Molecular Evolution.

[27]  J A Lake,et al.  The order of sequence alignment can bias the selection of tree topology. , 1991, Molecular biology and evolution.

[28]  D. Dykhuizen Santa Rosalia revisited: Why are there so many species of bacteria? , 2004, Antonie van Leeuwenhoek.

[29]  W. Doolittle,et al.  Lateral genomics. , 1999, Trends in cell biology.

[30]  M. Ghirardi,et al.  Oxygen sensitivity of algal H2-production , 1997, Applied biochemistry and biotechnology.

[31]  Sayaka,et al.  Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. , 1996, DNA research : an international journal for rapid publication of reports on genes and genomes.

[32]  R. Brown Effect of temperature , 1996 .

[33]  F. Eiserling,et al.  DNA enzymology above 100 degrees C. Topoisomerase V unlinks circular DNA at 80-122 degrees C. , 1995, The Journal of biological chemistry.

[34]  M. Syvanen Horizontal gene transfer: evidence and possible consequences. , 1994, Annual review of genetics.

[35]  J. Gogarten,et al.  Horizontal transfer of ATPase genes--the tree of life becomes a net of life. , 1993, Bio Systems.

[36]  R. Chróst Microbial Enzymes in Aquatic Environments , 1991, Brock/Springer Series in Contemporary Bioscience.

[37]  Patrick L. Williams,et al.  Finding the Minimal Change in a Given Tree , 1990 .

[38]  W. Gerrard Effect of Temperature , 1976 .