NMR Quantum Information Processing

Quantum computing exploits fundamentally new models of computation based on quantum mechanical properties instead of classical physics, and it is believed that quantum computers are able to dramatically improve computational power for particular tasks. At present, nuclear magnetic resonance (NMR) has been one of the most successful platforms amongst all current implementations. It has demonstrated universal controls on the largest number of qubits, and many advanced techniques developed in NMR have been adopted to other quantum systems successfully. In this review, we show how NMR quantum processors can satisfy the general requirements of a quantum computer, and describe advanced techniques developed towards this target. Additionally, we review some recent NMR quantum processor experiments. These experiments include benchmarking protocols, quantum error correction, demonstrations of algorithms exploiting quantum properties, exploring the foundations of quantum mechanics, and quantum simulations. Finally we summarize the concepts and comment on future prospects.

[1]  Warren S. Warren,et al.  The Usefulness of NMR Quantum Computing , 1997 .

[2]  Jun Yu Li,et al.  Experimental realization of post-selected weak measurements on an NMR quantum processor , 2013, 1311.5890.

[3]  Tzu-Chieh Wei,et al.  Global entanglement and quantum criticality in spin chains , 2005 .

[4]  Ny,et al.  Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits , 2009, 0910.1118.

[5]  R. Martinez,et al.  An algorithmic benchmark for quantum information processing , 2000, Nature.

[6]  Lorenza Viola,et al.  NMR quantum information processing and entanglement , 2002, Quantum Inf. Comput..

[7]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[8]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[9]  Raymond Laflamme,et al.  Practical experimental certification of computational quantum gates using a twirling procedure. , 2011, Physical review letters.

[10]  R Laflamme,et al.  Benchmarking quantum computers: the five-qubit error correcting code. , 2001, Physical review letters.

[11]  Samuel L. Braunstein Quantum error correction of dephasing in 3 qubits , 1996 .

[12]  D. Leung,et al.  Experimental realization of a quantum algorithm , 1998, Nature.

[13]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[14]  Martin Hilbert,et al.  The World’s Technological Capacity to Store, Communicate, and Compute Information , 2011, Science.

[15]  David Poulin,et al.  Fault-tolerant conversion between the Steane and Reed-Muller quantum codes. , 2014, Physical review letters.

[16]  R. Laflamme,et al.  Experimental quantum error correction with high fidelity , 2011, 1109.4821.

[17]  J. Whitfield,et al.  Simulating chemistry using quantum computers. , 2010, Annual review of physical chemistry.

[18]  A. Cabello Experimentally testable state-independent quantum contextuality. , 2008, Physical review letters.

[19]  F. Nori,et al.  Natural and artificial atoms for quantum computation , 2010, 1002.1871.

[20]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[21]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[22]  Jingfu Zhang,et al.  Experimental magic state distillation for fault-tolerant quantum computing , 2011, Nature Communications.

[23]  H. Weinfurter,et al.  Revealing anyonic features in a toric code quantum simulation , 2007, 0710.0895.

[24]  R. Feynman Simulating physics with computers , 1999 .

[25]  A. Datta,et al.  Entanglement and the power of one qubit , 2005, quant-ph/0505213.

[26]  Roman Orus,et al.  Visualizing elusive phase transitions with geometric entanglement , 2009, 0910.2488.

[27]  S. Sachdev Quantum Phase Transitions , 1999 .

[28]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[29]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[30]  G. Wannier,et al.  Antiferromagnetism. The Triangular Ising Net , 1950 .

[31]  Dieter Suter,et al.  Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code. , 2012, Physical review letters.

[32]  T. Ralph,et al.  Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.

[33]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[34]  Matthias Christandl,et al.  Perfect state transfer in quantum spin networks. , 2004, Physical review letters.

[35]  Raymond Laflamme,et al.  Symmetrized Characterization of Noisy Quantum Processes , 2007, Science.

[36]  E. Knill,et al.  EFFECTIVE PURE STATES FOR BULK QUANTUM COMPUTATION , 1997, quant-ph/9706053.

[37]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[38]  Jiannis K. Pachos,et al.  Introduction to Topological Quantum Computation , 2012 .

[39]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[40]  High-probability quantum state transfer among nodes of an open XXZ spin chain , 2009 .

[41]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[42]  D. Cory,et al.  Simulations of information transport in spin chains. , 2007, Physical review letters.

[43]  Quantum-information processing using strongly dipolar coupled nuclear spins , 2006, quant-ph/0610224.

[44]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[45]  J. Whitfield,et al.  Simulation of Classical Thermal States on a Quantum Computer: A Transfer Matrix Approach , 2010, 1005.0020.

[46]  D. Cory,et al.  Time-suspension multiple-pulse sequences: applications to solid-state imaging , 1990 .

[47]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[48]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[49]  R. Laflamme,et al.  Randomized benchmarking of single- and multi-qubit control in liquid-state NMR quantum information processing , 2008, 0808.3973.

[50]  K. West,et al.  Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν = 5/2. , 2013, Physical review letters.

[51]  Jonathan A. Jones Quantum computing with NMR. , 2010, Progress in nuclear magnetic resonance spectroscopy.

[52]  Jérémie Roland,et al.  Anderson localization makes adiabatic quantum optimization fail , 2009, Proceedings of the National Academy of Sciences.

[53]  Paul McAuley Danger — hard hack area , 2000, Nature.

[54]  Frank Wilczek,et al.  Quantum Mechanics of Fractional-Spin Particles , 1982 .

[55]  M. Mehring,et al.  Entanglement between an electron and a nuclear spin 1/2. , 2002, Physical review letters.

[56]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[57]  O. Biham,et al.  SIMULATING ISING SPIN GLASSES ON A QUANTUM COMPUTER , 1996, quant-ph/9611038.

[58]  F. E. Camino,et al.  Aharonov-Bohm electron interferometer in the integer quantum Hall regime , 2005 .

[59]  R. Laflamme,et al.  Experimental simulation of anyonic fractional statistics with an NMR quantum-information processor , 2012, 1210.4760.

[60]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[61]  Otfried Gühne,et al.  Demonstrating anyonic fractional statistics with a six-qubit quantum simulator. , 2007, Physical review letters.

[62]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[63]  Mark Howard,et al.  Tight noise thresholds for quantum computation with perfect stabilizer operations. , 2009, Physical review letters.

[64]  R Raussendorf,et al.  Scheme for demonstration of fractional statistics of anyons in an exactly solvable model. , 2007, Physical review letters.

[65]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[66]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[67]  Jun Li,et al.  Experimental estimation of average fidelity of a Clifford gate on a 7-qubit quantum processor. , 2014, Physical review letters.

[68]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[69]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[70]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[71]  Seth Lloyd,et al.  Quantum process tomography of the quantum Fourier transform. , 2004, The Journal of chemical physics.

[72]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[73]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[74]  Daniel Gottesman Quantum Error Correction and Fault-Tolerance , 2005 .

[75]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[76]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[77]  David Poulin,et al.  Practical characterization of quantum devices without tomography. , 2011, Physical review letters.

[78]  R Laflamme,et al.  Experimental approximation of the Jones polynomial with one quantum bit. , 2009, Physical review letters.

[79]  P. Goldbart,et al.  Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.

[80]  Raymond Laflamme,et al.  Using concatenated quantum codes for universal fault-tolerant quantum gates. , 2013, Physical review letters.

[81]  Victor Veitch,et al.  Contextuality supplies the ‘magic’ for quantum computation , 2014, Nature.

[82]  E. Knill,et al.  Liquid-state nuclear magnetic resonance as a testbed for developing quantum control methods , 2008, 0803.1982.

[83]  D. Browne,et al.  Bound states for magic state distillation in fault-tolerant quantum computation. , 2009, Physical review letters.

[84]  S. Sachdev Quantum Phase Transitions: A first course , 1999 .

[85]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[86]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[87]  S. Bose Quantum communication through an unmodulated spin chain. , 2002, Physical review letters.

[88]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[89]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[90]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[91]  Debbie W. Leung,et al.  Realization of quantum process tomography in NMR , 2000, quant-ph/0012032.

[92]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[93]  Raymond Laflamme,et al.  Coherent control of two nuclear spins using the anisotropic hyperfine interaction. , 2011, Physical review letters.

[94]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[95]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[96]  Jens Koch,et al.  Randomized benchmarking and process tomography for gate errors in a solid-state qubit. , 2008, Physical review letters.

[97]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[98]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[99]  T. Monz,et al.  Process tomography of ion trap quantum gates. , 2006, Physical review letters.

[100]  R. Laflamme,et al.  Digital quantum simulation of the statistical mechanics of a frustrated magnet , 2011, Nature Communications.

[101]  Raymond Laflamme,et al.  Testing contextuality on quantum ensembles with one clean qubit. , 2009, Physical review letters.

[102]  Yi-Kai Liu,et al.  Direct fidelity estimation from few Pauli measurements. , 2011, Physical review letters.