More accurate approximations for the Gamma function
暂无分享,去创建一个
[1] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[2] R. W. Gosper. Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.
[3] G. Rw. Decision procedure for indefinite hypergeometric summation , 1978 .
[4] Cristinel Mortici,et al. New improvements of the Stirling formula , 2010, Appl. Math. Comput..
[5] E. A. Karatsuba,et al. On the asymptotic representation of the Euler gamma function by Ramanujan , 2001 .
[6] Cristinel Mortici,et al. The asymptotic series of the generalized Stirling formula , 2010, Comput. Math. Appl..
[7] R. Serfling,et al. Asymptotic Expansions—I , 2006 .
[8] GergHo Nemes,et al. On the Coefficients of the Asymptotic Expansion of n , 2010, 1003.2907.
[9] Cristinel Mortici. Sharp inequalities related to Gosper's formula , 2010 .
[10] Cristinel Mortici,et al. New approximation formulas for evaluating the ratio of gamma functions , 2010, Math. Comput. Model..
[11] M. Abramowitz,et al. Mathematical functions and their approximations , 1975 .
[12] Cristinel Mortici,et al. Ramanujan formula for the generalized Stirling approximation , 2010, Appl. Math. Comput..
[13] Cristinel Mortici. Asymptotic expansions of the generalized Stirling approximations , 2010, Math. Comput. Model..
[14] G. Nemes,et al. New asymptotic expansion for the Gamma function , 2010 .