The Drosophila Gap Gene Network Is Composed of Two Parallel Toggle Switches

Drosophila “gap” genes provide the first response to maternal gradients in the early fly embryo. Gap genes are expressed in a series of broad bands across the embryo during first hours of development. The gene network controlling the gap gene expression patterns includes inputs from maternal gradients and mutual repression between the gap genes themselves. In this study we propose a modular design for the gap gene network, involving two relatively independent network domains. The core of each network domain includes a toggle switch corresponding to a pair of mutually repressive gap genes, operated in space by maternal inputs. The toggle switches present in the gap network are evocative of the phage lambda switch, but they are operated positionally (in space) by the maternal gradients, so the synthesis rates for the competing components change along the embryo anterior-posterior axis. Dynamic model, constructed based on the proposed principle, with elements of fractional site occupancy, required 5–7 parameters to fit quantitative spatial expression data for gap gradients. The identified model solutions (parameter combinations) reproduced major dynamic features of the gap gradient system and explained gap expression in a variety of segmentation mutants.

[1]  M. Brenowitz,et al.  Expression and Purification of the RNA Polymerase III Transcription Specificity Factor IIIB70 from Saccharomyces cerevisiae and Its Cooperative Binding with TATA-binding Protein* , 1996, The Journal of Biological Chemistry.

[2]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[3]  W. Bialek,et al.  Stability and Nuclear Dynamics of the Bicoid Morphogen Gradient , 2007, Cell.

[4]  John Reinitz,et al.  Bicoid cooperative DNA binding is critical for embryonic patterning in Drosophila. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Mark Ptashne,et al.  Regulation of transcription: from lambda to eukaryotes. , 2005, Trends in biochemical sciences.

[6]  H. Jäckle,et al.  Cooperative DNA‐binding by Bicoid provides a mechanism for threshold‐dependent gene activation in the Drosophila embryo , 1998, The EMBO journal.

[7]  Charles Blatti,et al.  Quantitative Analysis of the Drosophila Segmentation Regulatory Network Using Pattern Generating Potentials , 2010, PLoS biology.

[8]  Dmitri Papatsenko,et al.  A self-organizing system of repressor gradients establishes segmental complexity in Drosophila , 2003, Nature.

[9]  E. Davidson,et al.  Modeling transcriptional regulatory networks. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[10]  Qing Nie,et al.  Do morphogen gradients arise by diffusion? , 2002, Developmental cell.

[11]  David M. Holloway,et al.  Spatial Bistability Generates hunchback Expression Sharpness in the Drosophila Embryo , 2008, PLoS Comput. Biol..

[12]  Anna G. Nazina,et al.  Homotypic regulatory clusters in Drosophila. , 2003, Genome research.

[13]  Shuji Ishihara,et al.  Mutual interaction in network motifs robustly sharpens gene expression in developmental processes. , 2008, Journal of theoretical biology.

[14]  David H. Sharp,et al.  Dynamical Analysis of Regulatory Interactions in the Gap Gene System of Drosophila melanogaster , 2004, Genetics.

[15]  David H. Sharp,et al.  Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene , 2006, Nature Genetics.

[16]  Norbert Perrimon,et al.  Activation of posterior gap gene expression in the Drosophila blastoderm , 1995, Nature.

[17]  M. Levine,et al.  Mutually repressive interactions between the gap genes giant and Krüppel define middle body regions of the Drosophila embryo. , 1991, Development.

[18]  D. Papatsenko,et al.  Dual regulation by the Hunchback gradient in the Drosophila embryo , 2008, Proceedings of the National Academy of Sciences.

[19]  Hernan G. Garcia,et al.  Transcriptional Regulation by the Numbers 2: Applications , 2004, q-bio/0412011.

[20]  G. K. Ackers,et al.  Single-site mutations in the C-terminal domain of bacteriophage lambda cI repressor alter cooperative interactions between dimers adjacently bound to OR. , 1994, Biochemistry.

[21]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[22]  J. Posakony,et al.  Posterior stripe expression of hunchback is driven from two promoters by a common enhancer element. , 1995, Development.

[23]  Diethard Tautz,et al.  A morphogenetic gradient of hunchback protein organizes the expression of the gap genes Krüppel and knirps in the early Drosophila embryo , 1990, Nature.

[24]  John Reinitz,et al.  A database for management of gene expression data in situ , 2004, Bioinform..

[25]  David H. Sharp,et al.  A connectionist model of development. , 1991, Journal of theoretical biology.

[26]  David H. Sharp,et al.  Dynamic control of positional information in the early Drosophila embryo , 2004, Nature.

[27]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[28]  Wolfgang Driever,et al.  The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo , 1989, Nature.

[29]  V. Pirrotta,et al.  Interactions of the Drosophila gap gene giant with maternal and zygotic pattern-forming genes. , 1991, Development.

[30]  Stanislav Y Shvartsman,et al.  Multiscale modeling of diffusion in the early Drosophila embryo , 2010, Proceedings of the National Academy of Sciences.

[31]  S. Carroll,et al.  Positioning adjacent pair-rule stripes in the posterior Drosophila embryo. , 1994, Development.

[32]  K. Kaneko,et al.  Network Evolution of Body Plans , 2008, PloS one.

[33]  Leon Glass,et al.  Reverse Engineering the Gap Gene Network of Drosophila melanogaster , 2006, PLoS Comput. Biol..

[34]  Robert P Zinzen,et al.  A novel multifunctional factor involved in trans-splicing of chloroplast introns in Chlamydomonas , 2006, Nucleic acids research.

[35]  Terence Hwa,et al.  Transcriptional regulation by the numbers: models. , 2005, Current opinion in genetics & development.

[36]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[37]  L. Hood,et al.  A Genomic Regulatory Network for Development , 2002, Science.

[38]  Stephen Neidle,et al.  Exploring the recognition of quadruplex DNA by an engineered Cys2-His2 zinc finger protein. , 2006, Biochemistry.

[39]  Luciano da Fontoura Costa,et al.  Gene Expression Noise in Spatial Patterning: hunchback Promoter Structure Affects Noise Amplitude and Distribution in Drosophila Segmentation , 2011, PLoS Comput. Biol..

[40]  H. Bolouri Computational Modeling of Gene Regulatory Networks - A Primer , 2008 .

[41]  D. Papatsenko,et al.  Stripe formation in the early fly embryo: principles, models, and networks , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[42]  E. Siggia,et al.  Analysis of Combinatorial cis-Regulation in Synthetic and Genomic Promoters , 2008, Nature.

[43]  Stanislav Y Shvartsman,et al.  How long does it take to establish a morphogen gradient? , 2010, Biophysical journal.

[44]  D. Tautz,et al.  Differential regulation of target genes by different alleles of the segmentation gene hunchback in Drosophila. , 1994, Genetics.

[45]  R. Dilão,et al.  A Software Tool to Model Genetic Regulatory Networks. Applications to the Modeling of Threshold Phenomena and of Spatial Patterning in Drosophila , 2010, PloS one.

[46]  H. Jäckle,et al.  From gradients to stripes in Drosophila embryogenesis: filling in the gaps. , 1996, Trends in genetics : TIG.

[47]  M. Levine,et al.  Computational Models for Neurogenic Gene Expression in the Drosophila Embryo , 2006, Current Biology.

[48]  John Reinitz,et al.  FlyEx, the quantitative atlas on segmentation gene expression at cellular resolution , 2008, Nucleic Acids Res..

[49]  K. Struhl,et al.  The gradient morphogen bicoid is a concentration-dependent transcriptional activator , 1989, Cell.

[50]  Dmitri Papatsenko,et al.  Organization of developmental enhancers in the Drosophila embryo , 2009, Nucleic acids research.

[51]  Peter A. Lawrence,et al.  Control of Drosophila body pattern by the hunchback morphogen gradient , 1992, Cell.

[52]  M Hoch,et al.  Competition for overlapping sites in the regulatory region of the Drosophila gene Krüppel. , 1992, Science.

[53]  M. Levine,et al.  Activation and repression of transcription by the gap proteins hunchback and Krüppel in cultured Drosophila cells. , 1991, Genes & development.

[54]  David H. Sharp,et al.  Canalization of Gene Expression in the Drosophila Blastoderm by Gap Gene Cross Regulation , 2009, PLoS biology.

[55]  Art B Owen,et al.  A quasi-Monte Carlo Metropolis algorithm. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  M. Hülskamp,et al.  Gap genes and gradients – The logic behind the gaps , 1991, BioEssays : news and reviews in molecular, cellular and developmental biology.

[57]  M. Levine,et al.  Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. , 1991, Science.

[58]  C. Nüsslein-Volhard,et al.  The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner , 1988, Cell.

[59]  G. K. Ackers,et al.  Quantitative model for gene regulation by lambda phage repressor. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Diethard Tautz,et al.  Posterior segmentation of the Drosophila embryo in the absence of a maternal posterior organizer gene , 1989, Nature.

[61]  Claude Desplan,et al.  Synergy between the hunchback and bicoid morphogens is required for anterior patterning in Drosophila , 1994, Cell.

[62]  W. Bialek,et al.  Probing the Limits to Positional Information , 2007, Cell.

[63]  V. Pirrotta,et al.  The giant gene of Drosophila encodes a b-ZIP DNA-binding protein that regulates the expression of other segmentation gap genes. , 1992, Development.

[64]  M. Levine,et al.  Spatial regulation of the gap gene giant during Drosophila development. , 1991, Development.

[65]  D. Tautz,et al.  Autonomous concentration-dependent activation and repression of Krüppel by hunchback in the Drosophila embryo. , 1994, Development.

[66]  C. Desplan,et al.  Cooperative dimerization of paired class homeo domains on DNA. , 1993, Genes & development.