The INARCH(1) Model for Overdispersed Time Series of Counts

The INARCH(1) model for overdispersed time series of counts has a simple structure, a parsimonious parametrization, and a great potential for applications in practice. We analyze two approaches to approximate the marginal process distribution: a Markov chain approach and the Poisson–Charlier expansion. Then approaches for estimating the two model parameters are discussed. We derive explicit expressions for the asymptotic distribution of the maximum likelihood and conditional least squares estimators. They are used for constructing simultaneous confidence regions, the finite-sample performance of which is analyzed in a simulation study. A real-data example from economics illustrates the application of the INARCH(1) model.

[1]  Roman Liesenfeld,et al.  Time series of count data: modeling, estimation and diagnostics , 2006, Comput. Stat. Data Anal..

[2]  R. Keith Freeland,et al.  Statistical analysis of discrete time series with application to the analysis of workers' compensation claims data , 1998 .

[3]  S. Katti Analysis With Standard Contagious Distributions , 1982 .

[4]  Dag Tjøstheim,et al.  Poisson Autoregression , 2008 .

[5]  Anil K. Bera,et al.  ARCH Models: Properties, Estimation and Testing , 1993 .

[6]  K. Audenaert Inverse moments of univariate discrete distributions via the Poisson expansion , 2008, 0809.4155.

[7]  D. J. Friedman Some Considerations in the Use of Quality Control Techniques in Integrated Circuit , 1993 .

[8]  Benjamin Kedem,et al.  Regression Models for Time Series Analysis: Kedem/Time Series Analysis , 2005 .

[9]  A. Barbour Asymptotic expansions in the Poisson limit theorem , 1987 .

[10]  Peter A. Heimann,et al.  Attributes Control Charts with Large Sample Sizes , 1996 .

[11]  Christian H. Weiß,et al.  Thinning operations for modeling time series of counts—a survey , 2008 .

[12]  Bonnie K. Ray,et al.  Regression Models for Time Series Analysis , 2003, Technometrics.

[13]  Fukang Zhu,et al.  Diagnostic checking integer-valued ARCH(p) models using conditional residual autocorrelations , 2010, Comput. Stat. Data Anal..

[14]  B. McCabe,et al.  Asymptotic properties of CLS estimators in the Poisson AR(1) model , 2005 .

[15]  Gerd Ronning,et al.  Estimation in conditional first order autoregression with discrete support , 2005 .

[16]  Andréas Heinen,et al.  Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model , 2003 .

[17]  J. Edward Jackson,et al.  All Count Distributions Are Not Alike , 1972 .

[18]  Li Yuan,et al.  THE INTEGER‐VALUED AUTOREGRESSIVE (INAR(p)) MODEL , 1991 .

[19]  Christian H. Weiß,et al.  Modelling time series of counts with overdispersion , 2009, Stat. Methods Appl..

[20]  Poul Thyregod,et al.  Environmental Monitoring Based on a Hierarchical Poisson-Gamma Model , 2003 .

[21]  K. Poortema,et al.  On modelling overdispersion of counts , 1999 .

[22]  Alain Latour,et al.  Integer‐Valued GARCH Process , 2006 .

[23]  C. C. Heyde,et al.  Quasi-likelihood and Optimal Estimation , 2010 .

[24]  C. C. Heyde,et al.  Quasi-Likelihood and Optimal Estimation, Correspondent Paper , 1987 .

[25]  Paul I. Nelson,et al.  On Conditional Least Squares Estimation for Stochastic Processes , 1978 .

[26]  Fukang Zhu,et al.  Estimation and testing for a Poisson autoregressive model , 2011 .

[27]  Roberta Paroli,et al.  Poisson Hidden Markov models for time series of overdispersed insurance counts , 2000 .

[28]  D. A. Evans,et al.  An approach to the probability distribution of cusum run length , 1972 .

[29]  A. W. Kemp,et al.  Analysis with Standard Contagious Distributions , 1982 .