Orthogonal latin squares with small subsquares
暂无分享,去创建一个
W. D. Wallis | W. Wallis | L. Zhu | L. Zhu
[1] E. T. Parker. Nonextendibility conditions on mutually orthogonal Latin squares , 1962 .
[2] Richard M. Wilson,et al. On resolvable designs , 1972, Discret. Math..
[3] Haim Hanani,et al. On Balanced Incomplete Block Designs with Blocks Having Five Elements , 1972, J. Comb. Theory, Ser. A.
[4] A. S. Hedayat,et al. On the theory and application of sum composition of Latin squares and orthogonal Latin squares. , 1974 .
[5] J. Dénes,et al. Latin squares and their applications , 1974 .
[6] Shinmin Patrick Wang. On self-orthogonal Latin squares and partial transversals of Latin squares / , 1978 .
[7] W. D. Wallis. SPOUSE‐AVOIDING MIXED DOUBLES TOURNAMENTS , 1979 .
[8] Frank E. Bennett,et al. On the spectrum of Stein quasigroups , 1980, Bulletin of the Australian Mathematical Society.
[9] David A. Drake,et al. Orthogonal latin squares with orthogonal subsquares , 1980 .
[10] Douglas R. Stinson,et al. Mols with holes , 1983, Discret. Math..
[11] David A. Drake,et al. Pairwise Balanced Designs Whose Line Sizes Do Not Divide Six , 1983, J. Comb. Theory, Ser. A.