The evolution of a spatial stochastic network

The asymptotic behavior of a stochastic network represented by a birth and death processes of particles on a compact state space is analyzed. In the births, particles are created at rate [lambda]+ and their location is independent of the current configuration. Deaths are due to negative particles arriving at rate [lambda]-. The death of a particle occurs when a negative particle arrives in its neighborhood and kills it. Several killing schemes are considered. The arriving locations of positive and negative particles are assumed to have the same distribution. By using a combination of monotonicity properties and invariance relations it is shown that the configurations of particles converge in distribution for several models. The problems of uniqueness of invariant measures and of the existence of accumulation points for the limiting configurations are also investigated. It is shown for several natural models that if [lambda]+

[1]  P. Robert Sur un processus de vie et de mort de particules sur [0,1] , 1987 .

[2]  Donald A. Dawson,et al.  Measure-valued Markov processes , 1993 .

[3]  L. H. Loomis An Introduction to Abstract Harmonic Analysis , 1953 .

[4]  Richard M. Karp,et al.  A probabilistic analysis of multidimensional bin packing problems , 1984, STOC '84.

[5]  E. Nummelin General irreducible Markov chains and non-negative operators: Positive and null recurrence , 1984 .

[6]  Mathew D. Penrose,et al.  Existence and spatial limit theorems for lattice and continuum particle systems , 2008 .

[7]  R. M. Loynes,et al.  The stability of a queue with non-independent inter-arrival and service times , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  S. Foss Some Open Problems Related to Stability , 2009, 0909.0462.

[9]  J. Neveu,et al.  Construction de files d'attente stationnaires , 1984 .

[10]  R. Serfozo Basics of Applied Stochastic Processes , 2012 .

[11]  S. V. Fomin,et al.  Ergodic Theory , 1982 .

[12]  J. Mecke,et al.  Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen , 1967 .

[13]  M. Beil,et al.  The Laplacian in a stochastic model for spatiotemporal reaction systems , 2008 .

[14]  A. A. Borovkov,et al.  STOCHASTICALLY RECURSIVE SEQUENCES AND THEIR GENERALIZATIONS , 1992 .

[15]  Lasse Leskelä,et al.  Stability of a spatial polling system with greedy myopic service , 2009, Ann. Oper. Res..

[16]  Nancy L. Garcia,et al.  Spatial birth and death processes as solutions of stochastic equations , 2006 .

[17]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[18]  P. Ferrari,et al.  Perfect simulation for interacting point processes, loss networks and Ising models , 1999, math/9911162.

[19]  Edward G. Coffman,et al.  Approximation algorithms for bin packing: a survey , 1996 .

[20]  W. Arendt,et al.  Simulating the formation of keratin filament networks by a piecewise-deterministic Markov process. , 2009, Journal of theoretical biology.

[21]  Czesaw Ryll-Nardzewski,et al.  Remarks on Processes of Calls , 1961 .

[22]  M. Eisen,et al.  Probability and its applications , 1975 .

[23]  W. Rudin Real and complex analysis , 1968 .

[24]  André Weil,et al.  L'integration dans les groupes topologiques et ses applications , 1951 .

[25]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[26]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .