The microstructural foundations of leverage effect and rough volatility

We show that typical behaviors of market participants at the high frequency scale generate leverage effect and rough volatility. To do so, we build a simple microscopic model for the price of an asset based on Hawkes processes. We encode in this model some of the main features of market microstructure in the context of high frequency trading: high degree of endogeneity of market, no-arbitrage property, buying/selling asymmetry and presence of metaorders. We prove that when the first three of these stylized facts are considered within the framework of our microscopic model, it behaves in the long run as a Heston stochastic volatility model, where a leverage effect is generated. Adding the last property enables us to obtain a rough Heston model in the limit, exhibiting both leverage effect and rough volatility. Hence we show that at least part of the foundations of leverage effect and rough volatility can be found in the microstructure of the asset.

[1]  Yacine Ait-Sahalia,et al.  Modeling Financial Contagion Using Mutually Exciting Jump Processes , 2010 .

[2]  V. G. Rousseau,et al.  Finite temperature phase diagram of spin-1/2 bosons in two-dimensional optical lattice , 2011, 1109.3045.

[3]  E. Bacry,et al.  Some limit theorems for Hawkes processes and application to financial statistics , 2013 .

[4]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[5]  M. Rosenbaum,et al.  Volatility is rough , 2014, 1410.3394.

[6]  Lokenath Debnath,et al.  Some properties of the Mittag-Leffler functions , 2007 .

[7]  Patrick Roome,et al.  Asymptotic Behaviour of the Fractional Heston Model , 2014 .

[8]  Tarun Chordia,et al.  Sell-order liquidity and the cross-section of expected stock returns , 2012 .

[9]  Mathieu Rosenbaum,et al.  Large tick assets: implicit spread and optimal tick size , 2012, 1207.6325.

[10]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[11]  Luc Bauwens,et al.  Dynamic Latent Factor Models for Intensity Processes , 2004 .

[12]  Stephen Figlewski,et al.  Is the "Leverage Effect" a Leverage Effect? , 2000 .

[13]  Mark Veraar,et al.  The stochastic Fubini theorem revisited , 2012 .

[14]  P. Protter,et al.  Weak Limit Theorems for Stochastic Integrals and Stochastic Differential Equations , 1991 .

[15]  Kay Giesecke,et al.  Affine Point Processes and Portfolio Credit Risk , 2010, SIAM J. Financial Math..

[16]  Mathieu Rosenbaum,et al.  Limit theorems for nearly unstable Hawkes processes , 2013, 1310.2033.

[17]  P. Embrechts,et al.  Multivariate Hawkes processes: an application to financial data , 2011, Journal of Applied Probability.

[18]  T. Hendershott,et al.  Market Maker Inventories and Stock Prices , 2006 .

[19]  Robert Almgren,et al.  Optimal execution of portfolio trans-actions , 2000 .

[20]  Zhijie Xiao,et al.  A generalized partially linear model of asymmetric volatility , 2002 .

[21]  A. Hawkes Point Spectra of Some Mutually Exciting Point Processes , 1971 .

[22]  E. Bacry,et al.  Estimation of slowly decreasing Hawkes kernels: Application to high frequency order book modelling , 2014, 1412.7096.

[23]  Clive G. Bowsher Modelling Security Market Events in Continuous Time: Intensity Based, Multivariate Point Process Models , 2003 .

[24]  Daniel B. Nelson ARCH models as diffusion approximations , 1990 .

[25]  Guojun Wu,et al.  Asymmetric Volatility and Risk in Equity Markets , 1997 .

[26]  P. Mykland,et al.  The Estimation of Leverage Effect With High-Frequency Data , 2013 .

[27]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[28]  E. Bacry,et al.  Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency financial data , 2011, 1112.1838.

[29]  Arak M. Mathai,et al.  Mittag-Leffler Functions and Their Applications , 2009, J. Appl. Math..

[30]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[31]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[32]  H. Waelbroeck,et al.  Optimal Execution of Portfolio Transactions with Short‐Term Alpha , 2013 .

[33]  Markus K. Brunnermeier,et al.  Market Liquidity and Funding Liquidity , 2005 .

[34]  Frédéric Abergel,et al.  Understanding the Stakes of High-Frequency Trading , 2014, The Journal of Trading.

[35]  A. Lindner Continuous Time Approximations to GARCH and Stochastic Volatility Models , 2009 .

[36]  Valentina Corradi,et al.  Reconsidering the continuous time limit of the GARCH(1, 1) process , 2000 .

[37]  Susan Thomas,et al.  Measuring and Explaining the Asymmetry of Liquidity , 2012 .

[38]  E. Ruiz,et al.  Revisiting Several Popular GARCH Models with Leverage Effect: Differences and Similarities , 2012 .

[39]  John Y. Campbell,et al.  No News is Good News: An Asymmetric Model of Changing Volatility in Stock Returns , 1991 .

[40]  Emmanuel Bacry,et al.  Modelling microstructure noise with mutually exciting point processes , 2011, 1101.3422.

[41]  A. Christie,et al.  The stochastic behavior of common stock variances: value , 1982 .

[42]  T. Ho,et al.  Optimal dealer pricing under transactions and return uncertainty , 1981 .

[43]  Jai Singh,et al.  Effect of exciton-spin-orbit-photon interaction in the performance of organic solar cells , 2013 .

[44]  A. C. Davison,et al.  Estimating value-at-risk: a point process approach , 2005 .

[45]  Stephen J. Hardiman,et al.  Critical reflexivity in financial markets: a Hawkes process analysis , 2013, 1302.1405.

[46]  J. Mémin,et al.  Convergence en loi des suites d'intégrales stochastiques sur l'espace $$\mathbb{D}$$ 1 de Skorokhod , 1989 .

[47]  K. French,et al.  Expected stock returns and volatility , 1987 .

[48]  Didier Sornette,et al.  Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data , 2013, 1308.6756.

[49]  Charles-Albert Lehalle,et al.  Market Microstructure in Practice , 2013 .

[50]  Arak M. Mathai,et al.  Special Functions for Applied Scientists , 2008 .

[51]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[52]  E. Bacry,et al.  Hawkes Processes in Finance , 2015, 1502.04592.

[53]  Jin-Chuan Duan,et al.  Augmented GARCH (p,q) process and its diffusion limit , 1997 .

[54]  Jianqing Fan,et al.  The Leverage Effect Puzzle: Disentangling Sources of Bias at High Frequency , 2011 .

[55]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[56]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[57]  Mathieu Rosenbaum,et al.  Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes , 2015, 1504.03100.

[58]  J. Zakoian Threshold heteroskedastic models , 1994 .

[59]  Jim Gatheral,et al.  Pricing under rough volatility , 2016 .

[60]  A. Hawkes,et al.  A cluster process representation of a self-exciting process , 1974, Journal of Applied Probability.

[61]  E. Bacry,et al.  Estimation of slowly decreasing Hawkes kernels: application to high-frequency order book dynamics , 2016 .