A Genome-Scale Metabolic Reconstruction of Mycoplasma genitalium, iPS189

With a genome size of ∼580 kb and approximately 480 protein coding regions, Mycoplasma genitalium is one of the smallest known self-replicating organisms and, additionally, has extremely fastidious nutrient requirements. The reduced genomic content of M. genitalium has led researchers to suggest that the molecular assembly contained in this organism may be a close approximation to the minimal set of genes required for bacterial growth. Here, we introduce a systematic approach for the construction and curation of a genome-scale in silico metabolic model for M. genitalium. Key challenges included estimation of biomass composition, handling of enzymes with broad specificities, and the lack of a defined medium. Computational tools were subsequently employed to identify and resolve connectivity gaps in the model as well as growth prediction inconsistencies with gene essentiality experimental data. The curated model, M. genitalium iPS189 (262 reactions, 274 metabolites), is 87% accurate in recapitulating in vivo gene essentiality results for M. genitalium. Approaches and tools described herein provide a roadmap for the automated construction of in silico metabolic models of other organisms.

[1]  David L. Popham,et al.  Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules , 2002 .

[2]  C. Schilling,et al.  Flux coupling analysis of genome-scale metabolic network reconstructions. , 2004, Genome research.

[3]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[4]  Bernhard Palsson,et al.  Two-dimensional annotation of genomes , 2004, Nature Biotechnology.

[5]  L Beijer,et al.  The glpP and glpF genes of the glycerol regulon in Bacillus subtilis. , 1993, Journal of general microbiology.

[6]  J. Pollack,et al.  The necessity of combining genomic and enzymatic data to infer metabolic function and pathways in the smallest bacteria: amino acid, purine and pyrimidine metabolism in Mollicutes. , 2002, Frontiers in bioscience : a journal and virtual library.

[7]  Bas Teusink,et al.  Accelerating the reconstruction of genome-scale metabolic networks , 2006, BMC Bioinformatics.

[8]  Intawat Nookaew,et al.  The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism , 2008, BMC Syst. Biol..

[9]  P. Karp,et al.  Genome annotation errors in pathway databases due to semantic ambiguity in partial EC numbers , 2005, Nucleic acids research.

[10]  Vinay Satish Kumar,et al.  Optimization based automated curation of metabolic reconstructions , 2007, BMC Bioinformatics.

[11]  Bernhard O. Palsson,et al.  Three factors underlying incorrect in silico predictions of essential metabolic genes , 2015 .

[12]  C. Chang,et al.  Spiroplasmas: cultivation in chemically defined medium. , 1982, Science.

[13]  Bernhard O. Palsson,et al.  Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions , 2000, BMC Bioinformatics.

[14]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[15]  C. A. Hutchinson,et al.  Genome transplantation in bacteria: changing one species to another. , 2007, Nature Reviews Microbiology.

[16]  A. Barabasi,et al.  Global organization of metabolic fluxes in the bacterium Escherichia coli , 2004, Nature.

[17]  C. Maranas,et al.  An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. , 2006, Metabolic engineering.

[18]  Jochen Förster,et al.  Modeling Lactococcus lactis using a genome-scale flux model , 2005, BMC Microbiology.

[19]  C. Francke,et al.  Reconstructing the metabolic network of a bacterium from its genome. , 2005, Trends in microbiology.

[20]  E V Koonin,et al.  How many genes can make a cell: the minimal-gene-set concept. , 2000, Annual review of genomics and human genetics.

[21]  B. Palsson,et al.  Systems approach to refining genome annotation , 2006, Proceedings of the National Academy of Sciences.

[22]  R. Wenzel,et al.  Enhanced isolation of Mycoplasma pneumoniae from throat washings with a newly-modified culture medium. , 1979, The Journal of infectious diseases.

[23]  B. Palsson,et al.  Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation , 2005, BMC Microbiology.

[24]  J. Craig Venter,et al.  Genome Transplantation in Bacteria: Changing One Species to Another , 2007, Science.

[25]  S. Brenner Errors in genome annotation. , 1999, Trends in genetics : TIG.

[26]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Shmuel Razin,et al.  Molecular Biology and Pathogenicity of Mycoplasmas , 1998, Microbiology and Molecular Biology Reviews.

[28]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[29]  G. Stephanopoulos,et al.  Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction , 2000, Biotechnology and bioengineering.

[30]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[31]  B. Palsson,et al.  Genome-scale Reconstruction of Metabolic Network in Bacillus subtilis Based on High-throughput Phenotyping and Gene Essentiality Data* , 2007, Journal of Biological Chemistry.

[32]  K. Hackett,et al.  A defined medium for a fastidious Spiroplasma. , 1987, Science.

[33]  S. Lee,et al.  Metabolic flux analysis and metabolic engineering of microorganisms. , 2008, Molecular bioSystems.

[34]  Guadalupe Oliva,et al.  Characterization of the inorganic pyrophosphatase from the pathogenic bacterium Helicobacter pylori , 2000, Archives of Microbiology.

[35]  B. Palsson,et al.  Metabolic modelling of microbes: the flux-balance approach. , 2002, Environmental microbiology.

[36]  R. Losick,et al.  Bacillus Subtilis and Its Closest Relatives: From Genes to Cells , 2001 .

[37]  Andrew R. Joyce,et al.  Experimental and Computational Assessment of Conditionally Essential Genes in Escherichia coli , 2006, Journal of bacteriology.

[38]  A. Burgard,et al.  Minimal Reaction Sets for Escherichia coli Metabolism under Different Growth Requirements and Uptake Environments , 2001, Biotechnology progress.

[39]  C. V. Bizarro,et al.  Purine and pyrimidine nucleotide metabolism in Mollicutes , 2007 .

[40]  K. Dybvig,et al.  Molecular biology of mycoplasmas. , 1996, Annual review of microbiology.

[41]  B. Palsson,et al.  Towards multidimensional genome annotation , 2006, Nature Reviews Genetics.

[42]  C. Claudel-Renard,et al.  Enzyme-specific profiles for genome annotation: PRIAM. , 2003, Nucleic acids research.

[43]  Amit Varma,et al.  Parametric sensitivity of stoichiometric flux balance models applied to wild‐type Escherichia coli metabolism , 1995, Biotechnology and bioengineering.

[44]  Harold J. Morowitz,et al.  DEFINED MEDIUM FOR MYCOPLASMA LAIDLAW II , 1964, Journal of bacteriology.

[45]  E. Koonin,et al.  A minimal gene set for cellular life derived by comparison of complete bacterial genomes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[46]  A W Rodwell,et al.  A defined medium for Mycoplasma strain Y. , 1969, Journal of general microbiology.

[47]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[48]  Thomas Dandekar,et al.  Suspected utility of enzymes with multiple activities in the small genome Mycoplasma species: the replacement of the missing "household" nucleoside diphosphate kinase gene and activity by glycolytic kinases. , 2002, Omics : a journal of integrative biology.

[49]  Chunhui Li,et al.  Exploring the diversity of complex metabolic networks , 2005, Bioinform..

[50]  Nikos Kyrpides,et al.  The Genomes On Line Database (GOLD) v.2: a monitor of genome projects worldwide , 2005, Nucleic Acids Res..

[51]  D B Louria,et al.  Herpes simplex type II and Mycoplasma genitalium as risk factors for heterosexual HIV transmission: report from the heterosexual HIV transmission study. , 1998, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[52]  J. Maniloff,et al.  Phylogeny and Evolution , 2002 .

[53]  H. Chang,et al.  Development of chemically defined medium for Mannheimia succiniciproducens based on its genome sequence , 2008, Applied Microbiology and Biotechnology.

[54]  Timothy B. Stockwell,et al.  Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome , 2008, Science.

[55]  T. Jeffries,et al.  Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. , 2004, Metabolic engineering.

[56]  H Saito,et al.  Thymidine kinase of bacteria: activity of the enzyme in actinomycetes and related organisms. , 1984, Journal of general microbiology.

[57]  Bernhard O. Palsson,et al.  Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets , 2007 .

[58]  J. Pollack,et al.  The proteome of Mycoplasma genitalium. Chaps-soluble component. , 2000, European journal of biochemistry.

[59]  Johannes Tramper,et al.  Modeling Neisseria meningitidis metabolism: from genome to metabolic fluxes , 2007, Genome Biology.

[60]  N. Dibb,et al.  lep operon proximal gene is not required for growth or secretion by Escherichia coli , 1986, Journal of bacteriology.

[61]  Costas D Maranas,et al.  OptStrain: a computational framework for redesign of microbial production systems. , 2004, Genome research.

[62]  J. Skolnick,et al.  EFICAz: a comprehensive approach for accurate genome-scale enzyme function inference. , 2004, Nucleic acids research.

[63]  E. Gerlo,et al.  Arginyl-tRNA synthetase from Escherichia coli K12. Purification, properties, and sequence of substrate addition. , 1979, Biochemistry.

[64]  S. Kapiga,et al.  The epidemiology of HIV-1 infection in northern Tanzania: Results from a community-based study , 2006, AIDS care.

[65]  C. Hutchison,et al.  Essential genes of a minimal bacterium. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[66]  A. Valencia,et al.  Intrinsic errors in genome annotation. , 2001, Trends in genetics : TIG.

[67]  J. Pollack,et al.  The comparative metabolism of the mollicutes (Mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells. , 1997, Critical reviews in microbiology.

[68]  Adam M. Feist,et al.  Modeling methanogenesis with a genome‐scale metabolic reconstruction of Methanosarcina barkeri , 2006 .

[69]  J. Jensen,et al.  Mycoplasma genitalium infections. Diagnosis, clinical aspects, and pathogenesis. , 2006, Danish medical bulletin.

[70]  R. Rosales,et al.  A semi-defined medium without serum for small ruminant mycoplasmas. , 2008, Veterinary journal.

[71]  B. Palsson,et al.  Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use , 1994, Bio/Technology.

[72]  A. Barabasi,et al.  Predicting synthetic rescues in metabolic networks , 2008, Molecular systems biology.

[73]  Isabelle Martin-Verstraete,et al.  Carbohydrate Uptake and Metabolism , 2002 .

[74]  J. Baeten,et al.  High Mycoplasma genitalium organism burden is associated with shedding of HIV-1 DNA from the cervix. , 2008, The Journal of infectious diseases.

[75]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[76]  Peter D. Karp,et al.  The Pathway Tools software , 2002, ISMB.

[77]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[78]  G. Stephanopoulos,et al.  Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. , 2005, Metabolic engineering.

[79]  G. Church,et al.  Genome-Scale Metabolic Model of Helicobacter pylori 26695 , 2002, Journal of bacteriology.

[80]  L. Fan,et al.  Complementary identification of multiple flux distributions and multiple metabolic pathways. , 2005, Metabolic engineering.