Testing Exponentiality Based on Kullback-Leibler Information With Progressively Type-II Censored Data

We express the joint entropy of progressively censored order statistics in terms of an incomplete integral of the hazard function, and provide a simple estimate of the joint entropy of progressively Type-II censored data. We then construct a goodness-of-fit test statistic based on Kullback-Leibler information with progressively Type-II censored data. Finally, by using Monte Carlo simulations, the power of the test is estimated, and compared against several alternatives under different progressive censoring schemes

[1]  Shuang Chen,et al.  The entropy of ordered sequences and order statistics , 1990, IEEE Trans. Inf. Theory.

[2]  Claude E. Shannon,et al.  A Mathematical Theory of Communications , 1948 .

[3]  D. Gokhale On entropy-based goodness-of-fit tests , 1983 .

[4]  Wayne Nelson,et al.  Applied life data analysis , 1983 .

[5]  Sangun Park,et al.  The Entropy of Consecutive Order Statistics , 1995, IEEE Trans. Inf. Theory.

[6]  H. Ohta,et al.  A Test for Normality Based on Kullback—Leibler Information , 1989 .

[7]  N. Balakrishnan,et al.  Progressive Censoring: Theory, Methods, and Applications , 2000 .

[8]  Adrian Bowman,et al.  Density based tests for goodness-of-fit , 1992 .

[9]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[10]  N. Balakrishnan,et al.  Goodness-of-fit tests based on spacings for progressively type-II censored data from a general location-scale distribution , 2004, IEEE Transactions on Reliability.

[11]  Narayanaswamy Balakrishnan,et al.  Progressive censoring methodology: an appraisal , 2007 .

[12]  Nader Ebrahimi,et al.  Testing exponentiality based on Kullback-Leibler information , 1992 .

[13]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[14]  Narayanaswamy Balakrishnan,et al.  Interval Estimation of Parameters of Life From Progressively Censored Data , 1994 .

[15]  Nader Ebrahimi Testing exponentiality of the residual life, based on dynamic Kullback-Leibler information , 1998 .

[16]  Edward C. van der Meulen,et al.  Entropy-Based Tests of Uniformity , 1981 .

[17]  Sangun Park,et al.  Testing exponentiality based on the Kullback-Leibler information with the type II censored data , 2005, IEEE Transactions on Reliability.

[18]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[19]  Narayanaswamy Balakrishnan,et al.  Estimation of parameters from progressively censored data using EM algorithm , 2002 .

[20]  Oldrich A Vasicek,et al.  A Test for Normality Based on Sample Entropy , 1976 .

[21]  N. Balakrishnan,et al.  Reliability sampling plans for lognormal distribution, based on progressively-censored samples , 2000, IEEE Trans. Reliab..

[22]  K. L. Ngai,et al.  Maximum Entropy and Reliability Distributions , 1986, IEEE Transactions on Reliability.