Microglia: unique and common features with other tissue macrophages

[1]  Ansuman T. Satpathy,et al.  Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. , 2014, Immunity.

[2]  S. Gygi,et al.  Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia , 2013, Nature Neuroscience.

[3]  I. Smirnov,et al.  Dynamics of the Meningeal CD4+ T-cell repertoire are defined by the cervical lymph nodes and facilitate cognitive task performance in mice , 2013, Molecular Psychiatry.

[4]  J. Yates,et al.  Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor , 2013, Cell.

[5]  S. Rivest,et al.  Migration of Bone Marrow-Derived Cells Into the Central Nervous System in Models of Neurodegeneration: Naturally occurring migration of BMDC into the CNS , 2013 .

[6]  S. Rivest,et al.  Migration of Bone Marrow‐Derived Cells Into the Central Nervous System in Models of Neurodegeneration , 2013, The Journal of comparative neurology.

[7]  A. Bachstetter,et al.  The role of microglia in adult hippocampal neurogenesis , 2013, Front. Cell. Neurosci..

[8]  B. Malissen,et al.  Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. , 2013, Immunity.

[9]  T. Luedde,et al.  A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation , 2013, Nature Neuroscience.

[10]  Toshiro K. Ohsumi,et al.  The Microglial Sensome Revealed by Direct RNA Sequencing , 2013, Nature Neuroscience.

[11]  Beth Stevens,et al.  TGF-β Signaling Regulates Neuronal C1q Expression and Developmental Synaptic Refinement , 2013, Nature Neuroscience.

[12]  M. Merad,et al.  Macrophages: Gatekeepers of Tissue Integrity , 2013, Cancer Immunology Research.

[13]  Bernard Malissen,et al.  Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF , 2013, The Journal of experimental medicine.

[14]  J. Sheridan,et al.  Stress-Induced Recruitment of Bone Marrow-Derived Monocytes to the Brain Promotes Anxiety-Like Behavior , 2013, The Journal of Neuroscience.

[15]  P. Libby,et al.  Local proliferation dominates lesional macrophage accumulation in atherosclerosis , 2013, Nature Medicine.

[16]  R. Petersen,et al.  neurodegeneration : evidence for association of the p . R 47 H variant with frontotemporal dementia and Parkinson ¿ s disease Permalink , 2013 .

[17]  T. Goldmann,et al.  Role of Microglia in CNS Autoimmunity , 2013, Clinical & developmental immunology.

[18]  M. C. Lima,et al.  Involvement of MicroRNA in Microglia-Mediated Immune Response , 2013, Clinical & developmental immunology.

[19]  P. Taylor,et al.  Distinct bone marrow-derived and tissue resident macrophage-lineages proliferate at key stages during inflammation , 2013, Nature Communications.

[20]  Tuan Leng Tay,et al.  Love and death: microglia, NLRP3 and the Alzheimer's brain , 2013, Cell Research.

[21]  M. Ishii,et al.  Layer V cortical neurons require microglial support for survival during postnatal development , 2013, Nature Neuroscience.

[22]  M. Prinz,et al.  Factors regulating microglia activation , 2013, Front. Cell. Neurosci..

[23]  F. Ginhoux,et al.  Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. , 2013, Immunity.

[24]  J. Nabekura,et al.  Microglia: actively surveying and shaping neuronal circuit structure and function , 2013, Trends in Neurosciences.

[25]  Steffen Jung,et al.  Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. , 2013, Immunity.

[26]  S. Pradervand,et al.  Comprehensive Expression Analyses of Neural Cell-Type-Specific miRNAs Identify New Determinants of the Specification and Maintenance of Neuronal Phenotypes , 2013, The Journal of Neuroscience.

[27]  C. Haas,et al.  Bone Marrow Cell Recruitment to the Brain in the Absence of Irradiation or Parabiosis Bias , 2013, PloS one.

[28]  H. Neumann,et al.  Brain microglia: watchdogs with pedigree , 2013, Nature Neuroscience.

[29]  F. Rosenbauer,et al.  Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways , 2013, Nature Neuroscience.

[30]  Steffen Jung,et al.  Microglia, seen from the CX3CR1 angle , 2013, Front. Cell. Neurosci..

[31]  V. Perry,et al.  Regulation of Microglial Proliferation during Chronic Neurodegeneration , 2013, The Journal of Neuroscience.

[32]  A. Mildner,et al.  Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. , 2013, Immunity.

[33]  M. Daly,et al.  Variant TREM2 as risk factor for Alzheimer's disease. , 2013, The New England journal of medicine.

[34]  M. Heneka,et al.  NLRP3 is activated in Alzheimer´s disease and contributes to pathology in APP/PS1 mice , 2012, Nature.

[35]  Dangsheng Li The 2013 special issue on stem cell biology , 2013, Cell Research.

[36]  Ansuman T. Satpathy,et al.  Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. , 2012, Immunity.

[37]  I. Campbell,et al.  IFN Regulatory Factor 8 Is a Key Constitutive Determinant of the Morphological and Molecular Properties of Microglia in the CNS , 2012, PloS one.

[38]  Amin R. Mazloom,et al.  Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages , 2012, Nature Immunology.

[39]  James C. Cronk,et al.  IL-4 in the Brain: A Cytokine To Remember , 2012, The Journal of Immunology.

[40]  E. Audinat,et al.  Deficiency of the Microglial Receptor CX3CR1 Impairs Postnatal Functional Development of Thalamocortical Synapses in the Barrel Cortex , 2012, The Journal of Neuroscience.

[41]  H. Weiner,et al.  Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. , 2012, The Journal of clinical investigation.

[42]  M. Diamond,et al.  IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia , 2012, Nature Immunology.

[43]  M. Mehler,et al.  The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. , 2012, Developmental biology.

[44]  Steffen Jung,et al.  TGF‐β signaling through SMAD2/3 induces the quiescent microglial phenotype within the CNS environment , 2012, Glia.

[45]  F. Ginhoux,et al.  Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages , 2012, The Journal of experimental medicine.

[46]  Ben A. Barres,et al.  Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner , 2012, Neuron.

[47]  J. Pollard,et al.  A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells , 2012, Science.

[48]  K. Ozato,et al.  IRF8 Is a Critical Transcription Factor for Transforming Microglia into a Reactive Phenotype , 2012, Cell reports.

[49]  James C. Cronk,et al.  Wild type microglia arrest pathology in a mouse model of Rett syndrome , 2012, Nature.

[50]  R. Ransohoff,et al.  The Fractalkine Receptor but Not CCR2 Is Present on Microglia from Embryonic Development throughout Adulthood , 2012, The Journal of Immunology.

[51]  Steffen Jung,et al.  In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. , 2011, Blood.

[52]  A. Nimmerjahn,et al.  The Role of Microglia in the Healthy Brain , 2011, The Journal of Neuroscience.

[53]  C. Glass,et al.  Microglial cell origin and phenotypes in health and disease , 2011, Nature Reviews Immunology.

[54]  J. Pollard,et al.  Absence of Colony Stimulation Factor-1 Receptor Results in Loss of Microglia, Disrupted Brain Development and Olfactory Deficits , 2011, PloS one.

[55]  T. Wynn,et al.  Protective and pathogenic functions of macrophage subsets , 2011, Nature Reviews Immunology.

[56]  R. Ransohoff,et al.  Heterogeneity of CNS myeloid cells and their roles in neurodegeneration , 2011, Nature Neuroscience.

[57]  M. Giustetto,et al.  Synaptic Pruning by Microglia Is Necessary for Normal Brain Development , 2011, Science.

[58]  J. Satoh,et al.  Nasu–Hakola disease with a splicing mutation of TREM2 in a Japanese family , 2011, European journal of neurology.

[59]  P. Taylor,et al.  Macrophage heterogeneity and acute inflammation , 2011, European journal of immunology.

[60]  F. Rossi,et al.  Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool , 2011, Nature Neuroscience.

[61]  A. Mildner,et al.  Distinct and Non-Redundant Roles of Microglia and Myeloid Subsets in Mouse Models of Alzheimer's Disease , 2011, The Journal of Neuroscience.

[62]  J. Satoh,et al.  Immunohistochemical characterization of microglia in Nasu‐Hakola disease brains , 2011, Neuropathology : official journal of the Japanese Society of Neuropathology.

[63]  P. Taylor,et al.  A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation , 2011, European journal of immunology.

[64]  Damien Chaussabel,et al.  IRF8 mutations and human dendritic-cell immunodeficiency. , 2011, The New England journal of medicine.

[65]  K. Lambertsen,et al.  Differences in Origin of Reactive Microglia in Bone Marrow Chimeric Mouse and Rat After Transient Global Ischemia , 2011, Journal of neuropathology and experimental neurology.

[66]  H. Kettenmann,et al.  Physiology of microglia. , 2011, Physiological reviews.

[67]  S. Rotshenker,et al.  Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α) on phagocytes , 2011, Journal of Neuroinflammation.

[68]  H. Weiner,et al.  MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α–PU.1 pathway , 2011, Nature Medicine.

[69]  R. Ransohoff,et al.  The myeloid cells of the central nervous system parenchyma , 2010, Nature.

[70]  F. Ginhoux,et al.  Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages , 2010, Science.

[71]  Ania K. Majewska,et al.  Microglial Interactions with Synapses Are Modulated by Visual Experience , 2010, PLoS biology.

[72]  G. Enikolopov,et al.  Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. , 2010, Cell stem cell.

[73]  Petr Tvrdik,et al.  Hematopoietic Origin of Pathological Grooming in Hoxb8 Mutant Mice , 2010, Cell.

[74]  K. Kaestner,et al.  Transcriptional control of midbrain dopaminergic neuron development , 2006, International Journal of Developmental Neuroscience.

[75]  L. Minichiello TrkB signalling pathways in LTP and learning , 2009, Nature Reviews Neuroscience.

[76]  Manfred Schmidt,et al.  Hematopoietic Stem Cell Gene Therapy with a Lentiviral Vector in X-Linked Adrenoleukodystrophy , 2009, Science.

[77]  A. Mildner,et al.  CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. , 2009, Brain : a journal of neurology.

[78]  Steffen Jung,et al.  Infiltrating Blood-Derived Macrophages Are Vital Cells Playing an Anti-inflammatory Role in Recovery from Spinal Cord Injury in Mice , 2009, PLoS medicine.

[79]  Elisa Cerutti,et al.  Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and β-catenin , 2009, Nature Immunology.

[80]  K. Williams,et al.  Genetically modified CD34+ hematopoietic stem cells contribute to turnover of brain perivascular macrophages in long-term repopulated primates. , 2009, The American journal of pathology.

[81]  F. Gage,et al.  A Nurr1/CoREST Pathway in Microglia and Astrocytes Protects Dopaminergic Neurons from Inflammation-Induced Death , 2009, Cell.

[82]  J. Pollard Trophic macrophages in development and disease , 2009, Nature Reviews Immunology.

[83]  J. Nabekura,et al.  Resting Microglia Directly Monitor the Functional State of Synapses In Vivo and Determine the Fate of Ischemic Terminals , 2009, The Journal of Neuroscience.

[84]  V. Perry,et al.  Microglial physiology: unique stimuli, specialized responses. , 2009, Annual review of immunology.

[85]  A. Mildner,et al.  effector phase of autoimmunity in the central nervous system , 2009 .

[86]  J. Ramirez,et al.  Non-Cell-Autonomous Effects of Presenilin 1 Variants on Enrichment-Mediated Hippocampal Progenitor Cell Proliferation and Differentiation , 2008, Neuron.

[87]  A. Mildner,et al.  Ly-6G+CCR2− Myeloid Cells Rather Than Ly-6ChighCCR2+ Monocytes Are Required for the Control of Bacterial Infection in the Central Nervous System1 , 2008, The Journal of Immunology.

[88]  C. Nüsslein-Volhard,et al.  Live Imaging of Neuronal Degradation by Microglia Reveals a Role for v0-ATPase a1 in Phagosomal Fusion In Vivo , 2008, Cell.

[89]  L. Williams,et al.  Discovery of a Cytokine and Its Receptor by Functional Screening of the Extracellular Proteome , 2008, Science.

[90]  R. Dantzer,et al.  From inflammation to sickness and depression: when the immune system subjugates the brain , 2008, Nature Reviews Neuroscience.

[91]  John D. Lambris,et al.  The Classical Complement Cascade Mediates CNS Synapse Elimination , 2007, Cell.

[92]  A. Mildner,et al.  Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions , 2007, Nature Neuroscience.

[93]  F. Rossi,et al.  Local self-renewal can sustain CNS microglia maintenance and function throughout adult life , 2007, Nature Neuroscience.

[94]  H. Neumann,et al.  Neuronal ‘On’ and ‘Off’ signals control microglia , 2007, Trends in Neurosciences.

[95]  H. Kettenmann,et al.  Microglia: active sensor and versatile effector cells in the normal and pathologic brain , 2007, Nature Neuroscience.

[96]  H. Lassmann,et al.  Lack of adrenoleukodystrophy protein enhances oligodendrocyte disturbance and microglia activation in mice with combined Abcd1/Mag deficiency , 2007, Acta Neuropathologica.

[97]  A. Cumano,et al.  Monitoring of Blood Vessels and Tissues by a Population of Monocytes with Patrolling Behavior , 2007, Science.

[98]  L. Piccio,et al.  Blockade of TREM‐2 exacerbates experimental autoimmune encephalomyelitis , 2007, European journal of immunology.

[99]  H. Neumann,et al.  TREM2-Transduced Myeloid Precursors Mediate Nervous Tissue Debris Clearance and Facilitate Recovery in an Animal Model of Multiple Sclerosis , 2007, PLoS medicine.

[100]  Adi Mizrahi,et al.  Dendritic development and plasticity of adult-born neurons in the mouse olfactory bulb , 2007, Nature Neuroscience.

[101]  S. Bauer,et al.  The neuropoietic cytokine family in development, plasticity, disease and injury , 2007, Nature Reviews Neuroscience.

[102]  Daniel G. Tenen,et al.  Transcription factors in myeloid development: balancing differentiation with transformation , 2007, Nature Reviews Immunology.

[103]  N. Bresolin,et al.  Absence of TREM2 polymorphisms in patients with Alzheimer's disease and Frontotemporal Lobar Degeneration , 2007, Neuroscience Letters.

[104]  S. Mckercher,et al.  Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis , 2006, Proceedings of the National Academy of Sciences.

[105]  L. Piccio,et al.  Cutting Edge: TREM-2 Attenuates Macrophage Activation1 , 2006, The Journal of Immunology.

[106]  A. Mildner,et al.  Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. , 2006, Brain : a journal of neurology.

[107]  L. Lanier,et al.  Cutting Edge: Inhibition of TLR and FcR Responses in Macrophages by Triggering Receptor Expressed on Myeloid Cells (TREM)-2 and DAP121 , 2006, The Journal of Immunology.

[108]  Steffen Jung,et al.  Control of microglial neurotoxicity by the fractalkine receptor , 2006, Nature Neuroscience.

[109]  B. Birnir,et al.  Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE , 2006, Nature Medicine.

[110]  J. Julien,et al.  Bone Marrow-Derived Microglia Play a Critical Role in Restricting Senile Plaque Formation in Alzheimer's Disease , 2006, Neuron.

[111]  E. Pamer,et al.  Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2 , 2006, Nature Immunology.

[112]  Michal Schwartz,et al.  Microglial phenotype: is the commitment reversible? , 2006, Trends in Neurosciences.

[113]  C. Gravel,et al.  BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain , 2005, Nature.

[114]  S. Gordon,et al.  Monocyte and macrophage heterogeneity , 2005, Nature Reviews Immunology.

[115]  W. Gan,et al.  ATP mediates rapid microglial response to local brain injury in vivo , 2005, Nature Neuroscience.

[116]  F. Helmchen,et al.  Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo , 2005, Science.

[117]  I. Weissman,et al.  Hematopoietic cells maintain hematopoietic fates upon entering the brain , 2005, The Journal of experimental medicine.

[118]  L. Peltonen,et al.  The genetic causes of basal ganglia calcification, dementia, and bone cysts: DAP12 and TREM2. , 2005, Neurology.

[119]  E. Gundelfinger,et al.  Impaired Synaptic Function in the Microglial KARAP/DAP12-Deficient Mouse , 2004, The Journal of Neuroscience.

[120]  R. Spreafico,et al.  Distribution and signaling of TREM2/DAP12, the receptor system mutated in human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy dementia , 2004, The European journal of neuroscience.

[121]  W. Streit,et al.  Microglia and Alzheimer's disease pathogenesis , 2004, Journal of neuroscience research.

[122]  L. Moran,et al.  The facial nerve axotomy model , 2004, Brain Research Reviews.

[123]  N. Rooijen,et al.  Microglia Promote the Death of Developing Purkinje Cells , 2004, Neuron.

[124]  Hiroki Toda,et al.  Inflammatory Blockade Restores Adult Hippocampal Neurogenesis , 2003, Science.

[125]  O. Lindvall,et al.  Inflammation is detrimental for neurogenesis in adult brain , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[126]  Steffen Jung,et al.  Blood monocytes consist of two principal subsets with distinct migratory properties. , 2003, Immunity.

[127]  J. Jankovic,et al.  Erratum: Mutations in NR4A2 associated with familial Parkinson disease (Nature Genetics (2003) 33 (85-89)) , 2003 .

[128]  J. Jankovic,et al.  Mutations in NR4A2 associated with familial Parkinson disease , 2003, Nature Genetics.

[129]  F. Gage,et al.  Reduced Hippocampal Neurogenesis in Adult Transgenic Mice with Chronic Astrocytic Production of Interleukin-6 , 2002, The Journal of Neuroscience.

[130]  M. Frotscher,et al.  Targeting gene-modified hematopoietic cells to the central nervous system: Use of green fluorescent protein uncovers microglial engraftment , 2001, Nature Medicine.

[131]  U. Dirnagl,et al.  Immune surveillance of mouse brain perivascular spaces by blood‐borne macrophages , 2001, The European journal of neuroscience.

[132]  B. Blom,et al.  Down-regulation of the macrophage lineage through interaction with OX2 (CD200). , 2000, Science.

[133]  Leena Peltonen,et al.  Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts , 2000, Nature Genetics.

[134]  A. Sher,et al.  Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion , 2000, Molecular and Cellular Biology.

[135]  B. Thisse,et al.  Ontogeny and behaviour of early macrophages in the zebrafish embryo. , 1999, Development.

[136]  H. Kurz,et al.  Embryonic CNS macrophages and microglia do not stem from circulating, but from extravascular precursors , 1998, Glia.

[137]  A. Feeney,et al.  Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. , 1996, The EMBO journal.

[138]  M. Michaelson,et al.  CSF-1 deficiency in mice results in abnormal brain development. , 1996, Development.

[139]  M. Klemsz,et al.  The transcription factor PU.1 is involved in macrophage proliferation , 1996, The Journal of experimental medicine.

[140]  I. Weissman,et al.  Flow cytometric identification of murine neutrophils and monocytes. , 1996, Journal of immunological methods.

[141]  E. Unger,et al.  Male Donor‐derived Cells in the Brains of Female Sex‐mismatched Bone Marrow Transplant Recipients: A Y‐Chromosome Specific In situ Hybridization Study , 1993, Journal of neuropathology and experimental neurology.

[142]  V. Perry,et al.  Turnover of resident microglia in the normal adult mouse brain , 1992, Neuroscience.

[143]  W. Hickey,et al.  Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. , 1988, Science.

[144]  Y. Matsumoto,et al.  Absence of donor-type major histocompatibility complex class I antigen-bearing microglia in the rat central nervous system of radiation bone marrow chimeras , 1987, Journal of Neuroimmunology.

[145]  E. Stanley,et al.  CSF‐1—A mononuclear phagocyte lineage‐specific hemopoietic growth factor , 1983, Journal of cellular biochemistry.

[146]  R. van Furth,et al.  THE ORIGIN AND KINETICS OF MONONUCLEAR PHAGOCYTES , 1968, The Journal of experimental medicine.